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Abstract: Congenital diarrheal disorders (CDDs) are early-onset enteropathies generally inherited as
autosomal recessive traits. Most patients with CDDs require rapid diagnosis as they need immediate
and specific therapy to avoid a poor prognosis, but their clinical picture is often overlapping with a
myriad of nongenetic diarrheal diseases. We developed a next-generation sequencing (NGS) panel
for the analysis of 92 CDD-related genes, by which we analyzed patients suspect for CDD, among
which were (i) three patients with sucrose-isomaltase deficiency; (ii) four patients with microvillous
inclusion disease; (iii) five patients with congenital tufting enteropathy; (iv) eight patients with
glucose-galactose malabsorption; (v) five patients with congenital chloride diarrhea. In all cases,
we identified the mutations in the disease-gene, among which were several novel mutations for
which we defined pathogenicity using a combination of bioinformatic tools. Although CDDs are
rare, all together, they have an incidence of about 1%. Considering that the clinical picture of these
disorders is often confusing, a CDD-related multigene NGS panel contributes to unequivocal and
rapid diagnosis, which also reduces the need for invasive procedures.

Keywords: NGS; congenital diarrhea disorders; genes panel

1. Introduction

Congenital diarrheal disorders (CDDs) are a heterogeneous group of rare enteropathies
characterized by early-onset, generally monogenic and inherited as an autosomal recessive
trait [1]. In many CDD forms, diarrhea appears as the main symptom, while, in other
cases, it appears as a corollary of a more complex, systemic, and multiorgan syndrome [2,3].
Most patients with CDDs require a rapid diagnosis since they need immediate and specific
therapy to avoid a poor outcome [2,3]. The diagnostic approach may be complex because of
the large number of conditions, even nongenetic conditions, in differential diagnosis [1,2,4].
Some CDDs appear with a specific clinical picture, and there are tests that allow us to
quickly achieve the diagnosis, while, in other forms, the symptoms may overlap, and no
tests other than genetic analysis are available [5].

For many CDDs, the disease-gene is known; therefore, molecular analysis can provide
a rapid and specific diagnostic contribution [2]. Furthermore, mutation analysis helps
predict the severity of the course through genotype–phenotype correlations or, in some
cases, to guide the therapeutic choice [6,7]. In addition, molecular analysis allows us to
carry-out genetic counseling to the family, perform carrier analysis, and offer prenatal
diagnosis to high-risk couples [8].

In our laboratory, over the last 10 years, we have developed a flowchart for the
diagnosis of CDDs [1–4], and we carried out molecular analyses for a dozen different
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CDDs. Given that most forms of CDD are clinically indistinguishable (thus requiring the
contextual analysis of multiple genes), we developed a next-generation sequencing (NGS)
panel for the analysis of all genes related to CDDs that we now describe, together with the
results of molecular analysis of several patients with rare CDD-bearing novel genotypes.

2. Materials and Methods
2.1. Samples Collection

We studied 25 patients suspected to have CDDs, who showed severe, chronic diarrhea
starting from the first months of life (in most cases, since the first days), associated with
different combinations of vomiting, dehydration, failure to thrive, abdominal distention,
and acid-base balance alterations, mostly metabolic acidosis (Supplementary Table S1).
After an evaluation aimed to exclude nongenetic causes of diarrhea [4] and to diagnose
a CDD [5], such patients were referred to our laboratory for molecular analysis of one
or more disease-genes related to CDDs (Table 1). All enrolled subjects (legal guardians
for minors) underwent pretest counseling during which they were informed about the
significance of molecular analysis, provided information about their personal and familial
history, and gave written informed consent for the anonymous use of their clinical data.
For all enrolled subjects, we recorded the data on their personal and familial history and
their clinical conditions.

Table 1. Congenital diarrheal disorders and corresponding disease-genes analyzed in the present study.

Disease Acronym OMIM# Gene OMIM#

Congenital sucrase-isomaltase deficiency CSID 222900 Sucrase-Isomaltase 609845
Microvillus inclusion disease MVID 251850 MYO5B 606540

Congenital tufting enteropathy CTE 613217 EPCAM 185535
Glucose-galactose malabsorption GGM 606824 SLC5A1 182380

Congenital chloride diarrhea CCD 214700 SLC26A3 126650

A blood EDTA sample was collected from each subject. Genomic DNA (gDNA) was
isolated from peripheral blood using the Nucleon BACC3 Genomic DNA Extraction Kit (GE
Healthcare, Life Sciences, Chicago, IL, USA) or with the robotic workstation MagnaPure
(Roche, Basel, Switzerland) for fully automated purification of nucleic acids, according
to the manufacturer’s instructions. The quality of DNA samples was assessed by the
TapeStation system (Agilent Technologies, Santa Clara, CA, USA); only gDNA samples
with a DNA integrity number (DIN) >6 were considered suitable for NGS analysis. DNA
quantity was evaluated through the NanoDrop 2000c spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) and by using Qubit dsDNA BR and HS assays kits (Life
Technologies, Carlsbad, CA, USA).

2.2. NGS Custom Panel Design and Panel Content

To achieve the greatest diagnostic sensitivity and specificity, we selected 92 CDD genes,
reported in Supplementary Table S2. These genes included several classes of CDD [1,2]:
(i) genes involved in defects in epithelial nutrient and electrolyte transport; (ii) defects in
epithelial enzymes and metabolism; (iii) defects in epithelial trafficking and polarity; (iv)
enteroendocrine cell dysfunction; (v) immune dysregulation-associated enteropathy; (vi)
related syndromes and chronic pancreatitis. For each gene, we analyzed the coding regions,
50 bp in each of the intronic boundaries, the promoter, and the 3′UTR for a total target size
of about 1 Mb.

However, some regions in 3′UTRs and promoters can consist of repeating regions in
which the coverage can become lower and/or the variant filtering tools can exclude some
variants because they are considered of poor quality. This could cause the loss of detection
of some variants in these genomic regions.
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2.3. NGS Library Preparation and Sequencing

Patient analysis was performed using the abovementioned NGS panel. The cus-
tom design of our probes was realized using the web-based SureDesign application
(https://earray.chem.agilent.com/suredesign accessed on 12 July 2020). A total of 50 ng
of gDNA was processed through the SureSelectQXT Target Enrichment system (Agilent
Technologies, Santa Clara, CA, USA) for Illumina multiplexed sequencing. Briefly, gDNA
was enzymatically fragmented and adaptor-tagged to obtain a pool of fragments that were
amplified by PCR reaction. Then, the prepared DNA library amplicons were hybridized
to the capture custom library, made up of our 92 genes, and purified by streptavidin-
coated magnetic beads. The captured, targeted-enriched DNA library was amplified by
PCR reaction by using dual index primers, which allowed us to univocally barcode each
sample. Finally, SureSelect-enriched dual-indexed NGS samples were pooled together for
multiplexed sequencing. Sequencing reactions were carried out on the MiSeq instrument
(Illumina, San Diego, CA, USA) using a PE 150 × 2 flow cell, running 16 samples for each
sequencing run to obtain an average coverage of about 200× (>95% of the gene’s target
nucleotides are covered at >100 reads, with mapping quality score (MQ > 30) reads); 96%
of the analyzable target regions were covered by at least 50×.

2.4. NGS Data Analysis

The Alissa Align & Call v1.0.2.10 tool (Agilent Technologies, Santa Clara, CA, USA),
using the genome build hg38 as a reference, was used to perform alignments, variant
calling, and quality filtering. The median QV bases used in variant calling was 39, with an
average read length of 141 bp.

Variant filtering and interpretation were done using Alissa Interpret v5.2.6 CE IVD
software (Agilent Technologies, Santa Clara, CA, USA), using GRCh38.p2 and annotation
sources like 1000 Genomes (Phase 3 release v5, 10 September 2014, including GRCh38 data),
ClinVar (NCBI ClinVar October 2019), DGV (Database of Genomic Variants, version 15
May 2016), ESP6500 (variants in the ESP6500SI-V2 dataset of the exome sequencing project,
annotated with SeattleSeqAnnotation137), ExAC (ExAC release 1.0—including GRCh38
from lift over data), OMIM (OMIM, version 25 October 2019), dbNSFP (dbNSFP v3.0b2:
Database of functional predictions for nonsynonymous SNPs), dbSNP (dbSNP build 151),
and gnomAD (gnomAD release 2.0.2).

2.5. Variant’s Pathogenicity Predictions

Bioinformatics predictions of the variant’s effects were performed using the SIFT
(http://sift.jcvi.org/ accessed on 31 March 2020) and PolyPhen-2 (http://genetics.bwh.
harvard.edu/pph2/ accessed on 31 March 2020) tools. Further predictions were assessed
with the Mutation Taster tool (http://www.mutationtaster.org accessed on 31 March
2020) [9] and other tools included on the VarSome website (https://varsome.com/variant/
hg38 accessed on 31 March 2020) [10,11]. All software were used with their default pa-
rameter. All pathogenic mutations and variants of unknown significance that had clinical
relevance were confirmed with standard Sanger sequencing.

Finally, to define the pathogenic role of the variants identified in our patients, we used
the following approach: (i) we verified whether the variant had been previously identified
in patients bearing the disease under study; (ii) we used the abovementioned prediction
tools; (iii) for novel missense variants not annotated into databases, we searched for the
variant in 200 alleles derived from normal subjects; (iv) in patients that resulted homozy-
gous for a variant, in order to exclude a large deletion in the proband, we analyzed both
the parents to verify that both were heterozygous. Variants classification was performed
following American College of Medical Genetics and Genomics (ACMG) guidelines [12].

https://earray.chem.agilent.com/suredesign
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://www.mutationtaster.org
https://varsome.com/variant/hg38
https://varsome.com/variant/hg38


Diagnostics 2021, 11, 262 4 of 10

3. Results
3.1. Sucrase-Isomaltase (SI) Deficiency

Table 2 shows the results of the molecular analysis performed on three patients
affected by SI deficiency (OMIM #222900). Case 1 is male and is compound heterozygous
for the c.5234T>G and c.4474C>T SI gene mutations. Of these two mutations, the first
causes the change of phenylalanine with arginine (p.Phe1745Cys) and has previously
been described in a patient with SI deficiency [13]. The second is a novel variant that
causes the formation of a premature stop codon (p.Arg1492Ter), and prediction analysis
confirmed its pathogenic role (Supplementary Table S3). Case 2 is female, conceived by
consanguineous parents, and is homozygous for the c.3218G>A mutation. This mutation
causes the substitution of glycine with aspartate at position 1073 (p.Gly1073Asp). Both
parents were heterozygous for the proband mutation. The possible pathogenic effect of
such mutation, already described in patients with SI deficiency [13], was confirmed by
bioinformatics tools (Supplementary Table S3). Finally, Case 3 is male and was referred
for specific suspicion of SI deficiency. Molecular analysis revealed c.2074C>T and no other
mutations in the SI gene. The pathogenic role of the mutation was defined by bioinformatic
predictions (Supplementary Table S3).

Table 2. Molecular analysis of patients with congenital sucrase-isomaltase deficiency included in the present study.

Case Gender
Mutation

IUPAC Protein HGVS Protein HGVS Nucleotide Reference Number NCBI

1 Male F1745C p.Phe1745Cys c.5234T>G 79717168
R1492X † p.Arg1492Ter c.4474C>T 747584061

2 Female G1073D p.Gly1073Asp c.3218G>A 121912616
G1073D

3 Male R692C † p.Arg692Cys c.2074C>T 371618948
† Novel mutation.

3.2. Microvillus Inclusion Disease (MVID)

We studied four patients referred for suspected MVID (OMIM #251850; Table 3). The
first two patients, both males, respectively homozygous for the c.505A>G mutation (Case 1)
and compound heterozygous for the c.1376A>G and c.2700delG mutations (Case 2), had
been previously described by our group [14]. Case 3 is female and molecular analysis of the
myosin (MYO)5B gene revealed c.577C>A and the c.656G>A variants, both previously re-
ported in MVID patients [14] and both predicted to be pathogenic (Supplementary Table S3).
Case 4 is female, born to consanguineous parents. She is homozygous for the c.413A>G vari-
ant in the MYO5B gene. Both the parents are heterozygous for the variant. Bioinformatic
tools confirmed the pathogenic role of the novel mutation (Supplementary Table S3).

Table 3. Molecular analysis of patients with microvillus inclusion disease included in the present study.

Case Gender
Mutation

IUPAC Protein HGVS Protein HGVS Nucleotide Reference Number NCBI

1 Male K169E † p.Lys169Glu c.505A>G not reported
K169E †

2 Male N456S † p.Asn456Ser c.1376A>G 1207737174
R900S † p.Arg900SerfsTer4 c.2700delG not reported

3 Female S186X p.Ser186Ter c.557C>A 753977426
R219H p.Arg219His c.656G>A 1053713532

4 Female H138R † p.His138Arg c.413A>G 1229761410
H138R †

† Novel mutation.
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3.3. Congenital Tufting Enteropathy (CTE)

We studied 5 patients affected by CTE (OMIM # 613217; Table 4). Case 1, male, con-
ceived by consanguineous parents, was homozygous for the known c.757G>A epithelial
cell adhesion molecule (EPCAM) gene mutation [15]. Both the parents were heterozy-
gous for the proband mutation. Bioinformatic tools predicted the variant as pathogenic
(Supplementary Table S3). The variant, not annotated so far into databases, was absent in
200 alleles from control subjects. Case 2 was also born from consanguineous parents and
homozygous for the novel c.712G>T variant. Again, both the parents were heterozygous
for the c.712G>T variant. Such a variant causes the formation of a premature stop-codon
(p.Glu238Ter) and is predicted to be pathogenic. Case 3 was compound heterozygous
for the abovementioned c.712G>T mutation and the novel c.551-1G>T. The latter was
predicted to be pathogenic since it impairs the splicing process. Case 4 was compound het-
erozygous for the novel c.649G>T EPCAM variant, which was predicted to be pathogenic
because of the formation of a premature stop-codon (p.Glu217Ter), and for the c.758A>G,
variant, predicted to be pathogenic by bioinformatic tools. Such mutation involves the
same codon of the known c.757G>A pathogenic variant [15]. The c.758A>G variant was
absent in 200 alleles from control subjects. Finally, in Case 5, only the EPCAM c.556-14A>G
known mutation [15] was revealed. In this patient, the diagnosis of CTE was confirmed by
enzymatic analysis of duodenal biopsy samples.

Table 4. Molecular analysis of patients with congenital tufting enteropathy included in the present study.

Case Gender
Mutation

IUPAC Protein HGVS Protein HGVS Nucleotide Reference Number NCBI

1 Male D253N p.Asp253Asn c.757G>A not reported
D253N

2 Male E238X † p.Glu238Ter c.712G>T not reported
E238X †

3 Female c.551-1G>C† not reported
E238X † p.Glu238Ter c.712G>T not reported

4 Male E217X † p.Glu217Ter c.649G>T not reported
D253G † p.Asp253Gly c.758A>G not reported

5 Male p.Tyr186PhefsTer6 c.556-14A>G 376155665
† Novel mutation.

3.4. Glucose-Galactose Malabsorption (GGM)

We studied six patients suspected to have GGM (OMIM #606824; Table 5). Case 1,
conceived by consanguineous parents, was homozygous for the solute carrier (SLC)5A1
gene c.799C>T mutation. Both the parents were heterozygous for the proband mutation.
Such a mutation, previously described in GGM patients [16], is pathogenic since it causes
a premature stop-codon (p.Arg267Ter). Similarly, Case 2, again born to consanguineous
parents, was homozygous for a known [17] stop mutation, predicted as pathogenic (i.e.,
p.Arg63Ter), and present in both parents. Case 3 was compound heterozygous for two
novel variants, i.e., c.637G>C and c.1028T>C. Both were predicted as pathogenic. The first,
i.e., c.637G>C, not annotated into databases, was absent in 200 alleles from healthy subjects.
Case 4, born of consanguineous parents, was homozygous for the novel p.Val370del
mutation. Both the parents were heterozygous for the mutation, thus excluding a large
deletion in the proband. The mutation was classified as pathogenic by bioinformatic tools
and was absent in 200 alleles from healthy subjects. Case 5 is compound heterozygous for
the known c.1845C>G mutation [18] and for the novel c.418C>T mutation, both predicted
as pathogenic (Supplementary Table S3) by bioinformatic tools. Nevertheless, according
the ACMG guidelines, the latter variants described in Case 5 should be considered variants
of uncertain significance, although they appear to be causative of the disease phenotype.
Finally, Case 6 is compound heterozygous for two novel variants, i.e., c.866G>A, which
causes a premature stop-codon (i.e., p.Trp289Ter), and c.1573C>A, both predicted to be
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pathogenic. The second variant, not annotated into databases, was absent in 200 alleles
from healthy subjects.

Table 5. Molecular analysis of patients with glucose-galactose malabsorption included in the present study.

Case Gender
Mutation

IUPAC Protein HGVS Protein HGVS Nucleotide Reference Number NCBI

1 Male R267X p.Arg267Ter c.799C>T 779502629
R267X

2 Male R63X p.Arg63Ter c.187C>T 202166715
R63X

3 Male V213L † p.Val213Leu c.637G>C not reported
I343T † p.Ile343Thr c.1028T>C 774741107

4 Female V370del † p.Val371del c.1107_1109delAGT not reported
V370del †

5 Male R140W † p.Arg140Trp c.418C>T 748242943
H615Q p.His615Gln c.1845C>G 33954001

6 Female T289X † p.Trp289Ter c.866G>A 755654536
H525N † p.His525Asn c.1573C>A not reported

7 Male N51S p.Asn51Ser c.152A>G 17683011
A411T p.Ala411Thr c.1231G>A 17683430
H615Q p.His615Gln c.1845C>G 33954001

8 Male N51S p.Asn51Ser c.152A>G 17683011
A411T p.Ala411Thr c.1231G>A 17683430
H615Q p.His615Gln c.1845C>G 33954001
M1K p.Met1Lys c.2T>A not reported

† Novel mutation.

In addition, we studied two subjects suspect to have GGM. The first, Case 7, carried
3 missense mutations in cis, forming a complex allele with no other mutations in trans.
These variants are c.152A>G (p.Asn51Ser), c.1231G>A (p.Ala411Thr), and c.1845C>G
(p.His615Gln). In particular, the p.Asn51Ser variant affects amino acid residues that are
highly conserved across the SLC5A1 orthologs; hence, this mutation may be responsible
for impaired sugar transport, while p.Ala411Thr and p.His615Gln are probably benign
polymorphisms, according to Mutation Taster in-silico predictions. The other patient,
Case 8, had the three mutations in cis and c.2T>A (p.Met1Lys) in trans. This variant has
not been reported in reference databases and, according to in silico predictions, can be
classified as pathogenic (i.e., Polyphen, SIFT, Mutation Taster, and other tools all agree on
its pathogenicity). In both patients, the diagnosis of GGM was confirmed by histology of
small bowel and hydrogen breath tests, suggesting that the first patient (Case 7) would have
a second unidentified mutation within the noncoding regions of the gene, while in the other
(Case 8), the complex allele and the c.2T>A mutations were responsible for the disease.
However, the study of 200 alleles from healthy subjects revealed two cases heterozygous for
c.152A>G (p.Asn51Ser), c.1231G>A (p.Ala411Thr), and c.1845C>G (p.His615Gln) mutations
in cis. Furthermore, a sibling of Case 8, asymptomatic and negative to the hydrogen test,
had the same genotype as the affected sibling, i.e., was compound heterozygous for
c.152A>G (p.Asn51Ser), c.1231G>A (p.Ala411Thr), and c.1845C>G (p.His615Gln) complex
alleles and c.2T>A in trans.

3.5. Congenital Chloride Diarrhea (CCD)

We recently described 12 novel solute carrier (SLC)26A3 mutations in 17 cases of
CCDs (OMIM #214700) [19]. In the present study, we describe 5 other cases (Table 6). Case
1 is compound heterozygous for two novel gene variants, i.e., c.1484A>C and c.1181G>T,
both predicted as pathogenic (Supplementary Table S3). The first variant has not been
annotated into databases; we excluded its presence in 200 alleles from healthy subjects.
Case 2, conceived by consanguineous parents, is homozygous for the novel c.614delT
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variant that causes the formation of a premature stop-codon (i.e., p.Leu205ArgfsTer28).
The variant was predicted as pathogenic by bioinformatics tools (Supplementary Table S3).
Both the parents were heterozygous for the proband mutation. Case 3 is compound het-
erozygous for the same single-nucleotide deletion, c.614delT, and for a known duplication,
i.e., c.2024_2026dup, previously described [19]. Case 4 is compound heterozygous for the
known18 c.358G>A mutation and for the novel c.1522T>C variant, predicted as pathogenic.
Such a mutation is not annotated, and we excluded its presence in 200 alleles from healthy
subjects. Finally, Case 5 is compound heterozygous for two known stop-codon mutations,
c.559G>T and c.1735C>T (i.e., p.Gly187Ter and p.Arg579Ter).

Table 6. Molecular analysis of patients with congenital chloride diarrhea (CCD) included in the present study.

Case Gender
Mutation

IUPAC Protein HGVS Protein HGVS Nucleotide Reference Number NCBI

1 Male Q495P † p.Gln495Pro c.1484A>C not reported
S394I † p.Ser394Ile c.1181G>T 1228273365

2 Male L205RfsX28 † p.Leu205ArgfsTer28 c.614delT 1264217866
L205RfsX28 †

3 Male I675dup p.Ile675dup c.2024_2026dup 121913031
L205RfsX28 † p.Leu205ArgfsTer28 c.614delT 1264217866

4 Female C508R † p.Cys508Arg c.1522T>C not reported
G120S p.Gly120Ser c.358G>A 386833479

5 Male G187X p.Gly187Ter c.559G>T 121913032
R579X p.Arg579Ter c.1735C>T 1171640656

† Novel mutation.

4. Discussion

The NGS panel that we have developed facilitates the diagnostic workup of CDDs,
providing an unequivocal diagnosis in patients that often require to be rapidly managed
with specific therapies to avoid a poor outcome [3]. However, the analysis of large gene
panels frequently reveals a number of variants of uncertain significance (VUS) and novel
variants not reported into reference databases. Currently, the classification of these VUS
as pathogenic involves the guidelines indicated by the American College of Medical
Genetics, which are based on several criteria, including family studies, type of mutation,
protein residue affected by the variants, genetic association studies, posterior-probabilities
analysis, and functional studies [12]. Although these criteria are widely accepted and
used, the classification of VUS is still a challenge due to their low frequency, the lack of
family information, and the difficulty of performing functional studies using ex-vivo cell
models [20], enteroids, or stem cells [21] in a routine context. In the present study, we
assessed the pathogenic role of the novel variants by using the ACMG classification first,
and then, by the main prediction tools currently used, as described in the methods section.
Furthermore, a great help in the diagnosis of CDDs came from the continuous interaction
between physicians and molecular biologists who have discussed each case potentially
affected by CDDs and from the use of first-level diagnostic approaches to restrict the
clinical suspects [5], an approach that has been developed by our team over the last 10
years. Finally, the present study permitted us to define the genotype of all 25 patients and
to define the pathogenic role of two novel mutations responsible for SI deficiency, four
novel mutations responsible for MVID, three for CTE, six for GGM, and four for CCDs, all
very rare diseases for which a few dozen mutations are known so far [14,15,19,22].

Molecular analysis also helps to reduce the number of invasive approaches that could
be required for infants or neonates. In fact, the deficiency of SI diagnosis is based on
enzymatic analysis of biopsy samples from intestinal villi [23]. Similarly, the diagnosis of
MVID is based on histology that evidences microvillus inclusion in up to 10% of intestinal
villi of affected patients. The analysis is sometimes challenging [14,24], and the alterations
may be absent in atypical forms of MVID [25]. CTE is due to villous atrophy with crypt
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hyperplasia and focal crowding of surface enterocytes that resemble tufts, evidenced by
histology of intestinal samples, total or partial villus atrophy, and crypt hyperplasia in the
absence of inflammation, with the typical focal epithelial tufts that permit the differential
diagnosis between MVID and CTE [15]. The diagnosis of GGM is based on a combination of
tests that includes stool sugar analysis, hydrogen exhalation, and small bowel histology [26].
In patients with CCDs, molecular analysis may help define the therapeutic strategy. In
fact, we demonstrate that butyrate limits the severity of diarrhea [6], modulating intestine
inflammation [27] and enhancing the expression of the SLC26A3 protein, particularly in
patients with some mutations [7]. Thus, mutation analysis is crucial for the diagnosis of
such disease but also to predict patient responsiveness to oral butyrate therapy.

However, despite the fact that NGS analysis includes all known genes related to
CDDs, in some patients, only one mutation was identified. For example, in one of the three
patients with SI deficiency, we identified only the c.2074C>T heterozygous mutation within
the SI gene, but the diagnosis was confirmed by enzymatic analysis on duodenal biopsy
samples [23]. Similarly, in a patient with MVID, the analysis revealed only the EPCAM
c.556-14A>G known mutation [15]. In this patient, the diagnosis of CTE was confirmed by
the enzymatic analysis on duodenal biopsy samples. It is possible that in these patients, a
second, undetected mutation would be intronic or lie within the promoter [28] or within the
3′ untranslated region (UTR) of the gene [29], which are not covered by NGS. Otherwise,
the patient with SI deficiency could bear to the novel potential entity of subjects that
are affected by the disease but would result as heterozygous for SI gene mutations [13].
Moreover, these not-detected variants may also be located in other genes, which have not
been strictly associated with CDDs to date. For instance, they may be located in other genes
involved in the same pathways as the known associated ones. In this regard, to better
achieve differential diagnosis in our routinely diagnostic procedures, we recently designed
a new CDD-related panel of 112 genes. These include the 92 genes described herein and
other genes predicted to be involved in these diseases; moreover, we also selected not
only genes closely associated with CCDs but also those related to diseases that cause
similar clinical features. The inclusion of genes predicted to be involved in CDD-related
diseases may add intriguing insights into CCD pathogenesis and may help to achieve a
more precise diagnosis.

An interesting point is the discordance of the genotype–phenotype analysis. Among
the patients referred for GGM deficiency, two siblings had the same genotype, i.e., the
complex allele c.152A>G, c.1231G>A, and c.1845C>G in trans, with the c.2T>A GGM
mutation. Between the two siblings, only one was finally affected by GGM deficiency,
while the other was not affected, despite the fact that the same genotype that included
either c.152A>G or c.2T>A mutation was predicted as pathogenic. This case adds to
the well-known variability of the impact of complex alleles [30,31] and to the different
expression of the disease in sib-pairs that have the same genotype [31], which we recently
demonstrated in patients with cystic fibrosis.

To conclude: although most CDDs are rare, all together, they have an incidence
of about 1% in the general population; the disease-genes is known in most cases, and
unequivocal and rapid diagnosis is mandatory in most patients with CDDs in order to
immediately start the specific therapy.

Targeted gene panel analysis has pros and cons. The analysis of only “a few genes”
compared to the thousands of genes that make up the exome is useful principally when
clinical suspicion is strong and related to a limited number of diseases. Gene panel analysis
allows us to reach a faster diagnosis, which, in some cases, can be decisive for the patient’s
life. In contrast, exome analysis allows us to obtain a huge amount of data that can be used
in the future and reanalyzed in the light of new scientific discoveries, but it requires great
bioinformatics knowledge and longer analysis times. For these reasons, the exome analysis
should be preferred when clinical suspicion is unclear. This is not feasible with diseases for
which a very rapid therapeutic and clinical intervention is required. Nowadays, the cost of
a gene panel and of an exome is absolutely comparable; the choice between one method
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and the other may depend on various parameters, such as the laboratory organization,
the close collaboration between clinicians, geneticists, and molecular biologists, and the
urgency with which a response is required.

In this context, a multigene NGS panel to simultaneously analyze all disease-genes
responsible for CDDs is contributory in a reference laboratory for molecular diagnostics;
however, adequate bioinformatics expertise and functional approaches to define the ef-
fect of novel mutations are ancillary and indispensable in the clinical context. Finally, a
multidisciplinary approach between physicians and molecular geneticists to each patient
suspected to have CDD is mandatory to offer a proper diagnostic service in this field.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075
-4418/11/2/262/s1. Supplementary Table S1 lists the clinical data of patients reported in this
study. Supplementary Table S2 shows the list of genes included in our customized 92-gene panel.
Supplementary Table S3 reports the database annotations and pathogenicity predictions of the
variants reported in this study.
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