Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea
Abstract
1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Histology in Colonic Tissue
2.3. Site-Directed Mutagenesis
2.4. Cell Culture and Transfection Experiments
2.5. Western Blotting
2.6. PC1/3 Activity Measurement
3. Results
3.1. Clinical Phenotype Description
3.2. Gastrointestinal Phenotype
3.3. Functional Analysis of the PCSK1 E345A Mutation
3.4. Immunohistochemical Analysis of PC1/3 and Potential Substrates in Colonic Biopsies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seidah, N.G.; Mattei, M.G.; Gaspar, L.; Benjannet, S.; Mbikay, M.; Chrétien, M. Chromosomal assignments of the genes for neuroendocrine convertase PC1 (NEC1) to human 5q15–21, neuroendocrine convertase PC2 (NEC2) to human 20p11.1–11.2, and furin (mouse 7[D1-E2] region). Genomics 1991, 11, 103–107. [Google Scholar] [CrossRef]
- Seidah, N.G.; Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 2012, 11, 367–383. [Google Scholar] [CrossRef]
- Seidah, N.G. The Proprotein Convertases, 20 Years Later. Adv. Struct. Saf. Stud. 2011, 768, 23–57. [Google Scholar] [CrossRef]
- Stijnen, P.; Ramos-Molina, B.; O’Rahilly, S.; Creemers, J.W.M. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. Endocr. Rev. 2016, 37, 347–371. [Google Scholar] [CrossRef]
- Roebroek, A.J.; Taylor, N.A.; Louagie, E.; Pauli, I.; Smeijers, L.; Snellinx, A.; Lauwers, A.; Van de Ven, W.J.; Hartmann, D.; Creemers, J.W. Limited Redundancy of the Proprotein Convertase Furin in Mouse Liver. J. Biol. Chem. 2004, 279, 53442–53450. [Google Scholar] [CrossRef]
- He, Z.; Thorrez, L.; Siegfried, G.; Meulemans, S.; Evrard, S.; Tejpar, S.; Khatib, A.-M.; Creemers, J.W.M. The proprotein convertase furin is a pro-oncogenic driver in KRAS and BRAF driven colorectal cancer. Oncogene 2020, 39, 3571–3587. [Google Scholar] [CrossRef]
- Pais, R.; Gribble, F.M.; Reimann, F. Signalling pathways involved in the detection of peptones by murine small intestinal enteroendocrine L-cells. Peptides 2016, 77, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Engelstoft, M.S.; Egerod, K.L.; Holst, B.; Schwartz, T.W. A Gut Feeling for Obesity: 7TM Sensors on Enteroendocrine Cells. Cell Metab. 2008, 8, 447–449. [Google Scholar] [CrossRef]
- Mace, O.J.; Tehan, B.; Marshall, F.H. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol. Res. Perspect. 2015, 3, e00155. [Google Scholar] [CrossRef]
- Pais, R.; Gribble, F.M.; Reimann, F. Stimulation of incretin secreting cells. Ther. Adv. Endocrinol. Metab. 2016, 7, 24–42. [Google Scholar] [CrossRef]
- Parker, H.E.; Habib, A.M.; Rogers, G.J.; Gribble, F.M.; Reimann, F. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 2009, 52, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.X.; Zhao, W.; Solomon, C.; Rowland, K.J.; Ackerley, C.; Robine, S.; Holzenberger, M.; Gonska, T.; Brubaker, P.L. The Intestinal Epithelial Insulin-Like Growth Factor-1 Receptor Links Glucagon-Like Peptide-2 Action to Gut Barrier Function. Endocrinology 2014, 155, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.G.; Lindberg, I.; Solorzano–Vargas, R.S.; Wang, J.; Avitzur, Y.; Bandsma, R.; Sokollik, C.; Lawrence, S.; Pickett, L.A.; Chen, Z.; et al. Congenital Proprotein Convertase 1/3 Deficiency Causes Malabsorptive Diarrhea and Other Endocrinopathies in a Pediatric Cohort. Gastroenterology 2013, 145, 138–148. [Google Scholar] [CrossRef] [PubMed]
- O’Rahilly, S.; Gray, H.; Humphreys, P.J.; Krook, A.; Polonsky, K.S.; White, A.; Gibson, S.; Taylor, K.; Carr, C. Brief report: Impaired processing of prohormones associated with abnormali-ties of glucose homeostasis and adrenal function. N. Engl. J. Med. 1995, 333, 1386–1391. [Google Scholar] [CrossRef]
- Jackson, R.S.; Creemers, J.W.M.; Ohagi, S.; Raffin-Sanson, M.-L.; Sanders, L.; Montague, C.T.; Hutton, J.C.; O’Rahilly, S. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 1997, 16, 303–306. [Google Scholar] [CrossRef]
- Jackson, R.S.; Creemers, J.W.; Farooqi, I.S.; Raffin-Sanson, M.-L.; Varro, A.; Dockray, G.J.; Holst, J.J.; Brubaker, P.L.; Corvol, P.; Polonsky, K.S.; et al. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J. Clin. Investig. 2003, 112, 1550–1560. [Google Scholar] [CrossRef]
- Pépin, L.; Colin, E.; Tessarech, M.; Rouleau, S.; Bouhours-Nouet, N.; Bonneau, M.; Coutant, R. A New Case of PCSK1 Pathogenic Variant With Congenital Proprotein Convertase 1/3 Deficiency and Literature Review. J. Clin. Endocrinol. Metab. 2019, 104, 985–993. [Google Scholar] [CrossRef]
- Thiagarajah, J.R.; Kamin, D.S.; Acra, S.; Goldsmith, J.D.; Roland, J.T.; Lencer, W.I.; Muise, A.M.; Goldenring, J.R.; Avitzur, Y.; Martín, M.G. Advances in Evaluation of Chronic Diarrhea in Infants. Gastroenterology 2018, 154, 2045–2059.e6. [Google Scholar] [CrossRef]
- Terry, N.A.; Lee, R.A.; Walp, E.R.; Kaestner, K.H.; May, C.L. Dysgenesis of Enteroendocrine Cells in Aristaless-Related Homeobox Polyalanine Expansion Mutations. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 192–199. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Yang, Q.-C.; Lin, Y.; Xue, L.; Chen, M.-H.; Chen, J. Chromogranin A as a Marker for Diagnosis, Treatment, and Survival in Patients With Gastroenteropancreatic Neuroendocrine Neoplasm. Medicine 2014, 93, e247. [Google Scholar] [CrossRef]
- Ohsie, S.; Gerney, G.; Gui, D.; Kahana, D.; Martín, M.G.; Cortina, G. A paucity of colonic enteroendocrine and/or enterochromaffin cells characterizes a subset of patients with chronic unexplained diarrhea/malabsorption. Hum. Pathol. 2009, 40, 1006–1014. [Google Scholar] [CrossRef]
- Stijnen, P.; Brouwers, B.; Dirkx, E.; Ramos-Molina, B.; Van Lommel, L.; Schuit, F.; Thorrez, L.; Declercq, J.; Creemers, J.W.M. Endoplasmic reticulum-associated degradation of the mouse PC1/3-N222D hypomorph and human PCSK1 mutations contributes to obesity. Int. J. Obes. 2016, 40, 973–981. [Google Scholar] [CrossRef][Green Version]
- Creemers, J.W.; Choquet, H.; Stijnen, P.; Vatin, V.; Pigeyre, M.; Beckers, S.; Meulemans, S.; Than, M.E.; Yengo, L.; Tauber, M.; et al. Heterozygous Mutations Causing Partial Prohormone Convertase 1 Deficiency Contribute to Human Obesity. Diabetes 2011, 61, 383–390. [Google Scholar] [CrossRef]
- Sivagnanam, M.; Mueller, J.L.; Lee, H.; Chen, Z.; Nelson, S.F.; Turner, D.; Zlotkin, S.H.; Pencharz, P.B.; Ngan, B.; Libiger, O.; et al. Identification of EpCAM as the Gene for Congenital Tufting Enteropathy. Gastroenterology 2008, 135, 429–437. [Google Scholar] [CrossRef]
- Wilschanski, M.; Abbasi, M.; Blanco, E.; Lindberg, I.; Yourshaw, M.; Zangen, D.; Berger, I.; Shteyer, E.; Pappo, O.; Bar-Oz, B.; et al. A Novel Familial Mutation in the PCSK1 Gene That Alters the Oxyanion Hole Residue of Proprotein Convertase 1/3 and Impairs Its Enzymatic Activity. PLoS ONE 2014, 9, e108878. [Google Scholar] [CrossRef]
- Zhou, A.; Paquet, L.; Mains, R.E. Structural Elements That Direct Specific Processing of Different Mammalian Subtilisin-like Prohormone Convertases. J. Biol. Chem. 1995, 270, 21509–21516. [Google Scholar] [CrossRef]
- Anderson, E.D.; VanSlyke, J.K.; Thulin, C.D.; Jean, F.; Thomas, G. Activation of the furin endoprotease is a multiple-step process: Requirements for acidification and internal propeptide cleavage extension of the mature protein. The functions of pro-and amphiregulin) the propeptides are required for stability. EMBO J. 1997, 16, 1508–1518. [Google Scholar] [CrossRef]
- Williamson, D.M.; Elferich, J.; Ramakrishnan, P.; Thomas, G.; Shinde, U. The Mechanism by Which a Propeptide-encoded pH Sensor Regulates Spatiotemporal Activation of Furin. J. Biol. Chem. 2013, 288, 19154–19165. [Google Scholar] [CrossRef]
- Williamson, D.M.; Elferich, J.; Shinde, U. Mechanism of Fine-tuning pH Sensors in Proprotein Convertases. J. Biol. Chem. 2015, 290, 23214–23225. [Google Scholar] [CrossRef]
- Ugleholdt, R.; Poulsen, M.-L.H.; Holst, P.J.; Irminger, J.-C.; Orskov, C.; Pedersen, J.; Rosenkilde, M.M.; Zhu, X.; Steiner, D.F.; Holst, J.J. Prohormone Convertase 1/3 Is Essential for Processing of the Glucose-dependent Insulinotropic Polypeptide Precursor. J. Biol. Chem. 2006, 281, 11050–11057. [Google Scholar] [CrossRef]
- Dhanvantari, S.; Seidah, N.G.; Brubaker, P.L. Role of prohormone convertases in the tissue-specific processing of proglucagon. Mol. Endocrinol. 1996, 10, 342–355. [Google Scholar] [CrossRef][Green Version]
- Pépin, L.; Colin, E.; Tessarech, M.; Rouleau, S.; Bouhours-Nouet, N.; Bonneau, D.; Coutant, R. A new case of pcsk1 pathogenic variant with congenital proprotein convertase 1/3 deficiency and literature review. J. Clin. Endocrinol. Metab. Copyr. 2018, 104, 985–993. [Google Scholar] [CrossRef]
- Wang, J.; Cortina, G.; Wu, S.V.; Tran, R.; Cho, J.H.; Tsai, M.J.; Bailey, T.J.; Jamrich, M.; Ament, M.E.; Treem, W.R.; et al. Mutant Neurogenin-3 in Congenital Malabsorptive Diarrhea A BS TR AC T. N. Engl. J. Med. 2006, 355, 270–280. [Google Scholar] [CrossRef]
- Dey, A.; Lipkind, G.M.; Rouillé, Y.; Norrbom, C.; Stein, J.; Zhang, C.; Carroll, R.; Steiner, N.F. Significance of Prohormone Convertase 2, PC2, Mediated Initial Cleavage at the Proglucagon Interdomain Site, Lys70-Arg71, to Generate Glucagon. Endocrinology 2005, 146, 713–727. [Google Scholar] [CrossRef]
- Holyoak, T.; Wilson, M.A.; Fenn, T.D.; Kettner, C.A.; Petsko, G.A.; Fuller, R.S.; Ringe, D. 2.4 Å Resolution Crystal Structure of the Prototypical Hormone-Processing Protease Kex2 in Complex with an Ala-Lys-Arg Boronic Acid Inhibitor. Biochemistry 2003, 42, 6709–6718. [Google Scholar] [CrossRef]
Baseline | 30 min | 60 min | 90 min | 120 min | 150 min | 180 min | |
---|---|---|---|---|---|---|---|
Glucose | 11 | 8 | 6 | 10 | 17 | ||
Polycose | 0 | 3 | 3 | 3 | 4 | 28 | 24 |
Sucrose | 14 | 23 | 70 | 75 | 107 | 182 | 217 |
Fructose | 8 | 10 | 13 | 14 | 22 | 21 | 14 |
Lactose | 12 | 10 | 27 | 55 | 64 | 79 | 34 |
μmol/min/g | Test 1 | Test 2 | Test 3 1 | |
---|---|---|---|---|
Lactase | 14-33 | 29.3 | 6.2 | 18.8 |
Sucrase | 25-66 | 78.1 | 26.5 | 22.4 |
Maltase | 135-205 | 314.8 | 112 | 93.6 |
Palatinase | 8.5-22 | 23.7 | 8.9 | 6.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aerts, L.; Terry, N.A.; Sainath, N.N.; Torres, C.; Martín, M.G.; Ramos-Molina, B.; Creemers, J.W. Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea. Genes 2021, 12, 710. https://doi.org/10.3390/genes12050710
Aerts L, Terry NA, Sainath NN, Torres C, Martín MG, Ramos-Molina B, Creemers JW. Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea. Genes. 2021; 12(5):710. https://doi.org/10.3390/genes12050710
Chicago/Turabian StyleAerts, Laetitia, Nathalie A. Terry, Nina N. Sainath, Clarivet Torres, Martín G. Martín, Bruno Ramos-Molina, and John W. Creemers. 2021. "Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea" Genes 12, no. 5: 710. https://doi.org/10.3390/genes12050710
APA StyleAerts, L., Terry, N. A., Sainath, N. N., Torres, C., Martín, M. G., Ramos-Molina, B., & Creemers, J. W. (2021). Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea. Genes, 12(5), 710. https://doi.org/10.3390/genes12050710