Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = cone clog

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6473 KiB  
Article
Fluid and Electric Field Simulation and Optimization of the Multi-Vane and Multi-Slit Electrospinning Nozzle
by Jian Liu, Shoujun Dong, Yongru Liu, Shanshan Pan and Zhaosong Yin
Nanomaterials 2025, 15(6), 461; https://doi.org/10.3390/nano15060461 - 19 Mar 2025
Cited by 1 | Viewed by 518
Abstract
A multi-vane and multi-slit electrospinning nozzle for diversion was proposed to respond to the issues of easiness of clogging, existing End Effect among needles in current multi-needle electrospinning, and uncontrollable Taylor cone position in needleless electrospinning. The upper part of the novel nozzle [...] Read more.
A multi-vane and multi-slit electrospinning nozzle for diversion was proposed to respond to the issues of easiness of clogging, existing End Effect among needles in current multi-needle electrospinning, and uncontrollable Taylor cone position in needleless electrospinning. The upper part of the novel nozzle is a cylindrical straight pipe, and the lower part is a flow channel expansion structure composed of multiple vane components that spread outward at an angle. Ansys software was used to study the effect of different opening angles of the vanes on the spreading of the electrospinning solution. In the fluid simulation, for the novel nozzle with a central slit and a support structure, when the vanes have an opening angle of 35° and a length of 11 mm, the droplet holding time is 16 s, twice as long as the nozzle without support (8 s). This result corresponds to the subsequent droplet holding experiment, showing that the support structure aids droplet holding and enhances electrospinning stability. Comsol Multiphysics software was used to investigate the effect of the vanes’ parameters on the uniformity of the electric field. The results indicate that when the vanes of the new electrospinning nozzle are set at an opening angle of 35°, with four vanes each 11 mm in length, a receiving distance of 200 mm, and a voltage of 30 kV, the novel nozzle achieves an average electric field intensity of 5.26 × 10⁶ V/m with a CV value of 6.93%. Metal 3D printing was used to create a new nozzle for electrospinning, which successfully produced stable multiple jets and increased nanofiber output. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

18 pages, 20166 KiB  
Article
Parameter Optimization of Spiral Step Cleaning Device for Ratooning Rice Based on Computational Fluid Dynamics-Discrete Element Method Coupling
by Weijian Liu, Shan Zeng and Zhandong Wu
Agriculture 2024, 14(12), 2141; https://doi.org/10.3390/agriculture14122141 - 25 Nov 2024
Cited by 2 | Viewed by 932
Abstract
Ratooning rice plants have a high moisture content and strong adhesion during harvesting. Traditional cleaning devices are prone to clogging when processing ratooning rice, resulting in a series of problems such as high grain loss rate and high grain impurity rate. In response [...] Read more.
Ratooning rice plants have a high moisture content and strong adhesion during harvesting. Traditional cleaning devices are prone to clogging when processing ratooning rice, resulting in a series of problems such as high grain loss rate and high grain impurity rate. In response to the above issues, this article adopts the CFD-DEM coupling method to design a spiral step cleaning device. A detailed analysis was conducted on the influence of the cone angle and thickness of the spiral-stepped skeletons on the flow state, and flow velocity and pressure distribution cloud maps were obtained under different structural parameters. The vortex morphology under different thicknesses of the spiral-stepped skeletons was compared, and the structural parameters of the device were determined. The motion trajectory and distribution of impurity particles under different inlet flow velocities were analyzed using data superposition, and the appropriate inlet flow velocity range was determined. A test bench was built, and a three-factor quadratic regression orthogonal rotation combination experiment was conducted with fan speed, feeding rate, and device inclination angle as experimental factors. The results of the bench test show that the performance index reaches its optimum when the device inclination angle, fan speed, and feeding rate are 2.47°, 2906 r/min, and 4.0 kg/s, respectively. At this time, the grain impurity rate, grain loss rate, and sieve clogging rate are 2.21%, 2.15%, and 3.5%, respectively. Compared to those of traditional cleaning equipment, these value are reduced by 44.5%, 39.6%, and 83.9%, respectively. This study can provide ideas for the design of ratooning rice cleaning devices. Full article
Show Figures

Figure 1

16 pages, 11192 KiB  
Article
Designing the Spigot Structure of Hydrocyclones to Reduce Fine Particle Misplacement in Underflow
by Peikun Liu, Bo Chen, Duanxu Hou, Xinghua Yang, Wei Zhang and Yuanli Lu
Water 2024, 16(7), 1070; https://doi.org/10.3390/w16071070 - 8 Apr 2024
Cited by 1 | Viewed by 2687
Abstract
Hydrocyclones can be used to concentrate the entrained sands in sewage and alleviate the clogging and erosion of the drainage network, but in practical application, there are problems such as low concentrations of underflow and a high content of fine particles, which cause [...] Read more.
Hydrocyclones can be used to concentrate the entrained sands in sewage and alleviate the clogging and erosion of the drainage network, but in practical application, there are problems such as low concentrations of underflow and a high content of fine particles, which cause a significant load on the subsequent sand dewatering and recycling. This paper designs five spigot structures of hydrocyclones and investigates the separation performance by numerical simulation, aiming to improve the applicability of hydrocyclones in the sewage treatment process by optimizing the spigot structure. The research results show that a large cone spigot delays the external downward swirling flow and reduces fine particle content in the underflow, but its effective separation space is reduced, and the turbulence in the cone section area is more intensive, which influences the separation accuracy. An elongated spigot has a reduced underflow water distribution; fine particles are more enriched in the internal swirling flow, and the underflow recoveries of 1 μm and 5 μm particles drop by 2.34% and 2.31%. The spigot structure affects the downward fluid and air intake states; complicated spigot structures contribute to increasing the resistance of particle discharge through underflow, alleviating fine particle misplacement. Full article
(This article belongs to the Topic Oil, Gas and Water Separation Research)
Show Figures

Figure 1

16 pages, 7556 KiB  
Article
Cone Clogging of Submerged Entry Nozzle in Rare Earth Treated Ultra-Low Carbon Al-Killed Steel and Its Effect on the Flow Field and Vortex in the Mold
by Chengjian Hua, Min Wang, Dieter Senk, Hao Wang, Qi Zhang, Jianguo Zhi and Yanping Bao
Metals 2021, 11(4), 662; https://doi.org/10.3390/met11040662 - 19 Apr 2021
Cited by 22 | Viewed by 3984
Abstract
Two submerged entry nozzles (SENs) used for casting 1300 tons and 260 tons of Al-killed steel were dissected. Several parameters including block rate, nozzle clog angle, port width, and port height of the clogged nozzle were introduced to describe the geometry of clogs [...] Read more.
Two submerged entry nozzles (SENs) used for casting 1300 tons and 260 tons of Al-killed steel were dissected. Several parameters including block rate, nozzle clog angle, port width, and port height of the clogged nozzle were introduced to describe the geometry of clogs in the SENs based on the dissection; furthermore, a geometry model was established to describe the characteristics of the nozzle clogging of the SENs. A large-eddy simulation (LES) coupled with the volume of fraction (VOF) method was adopted to simulate the steel–slag interface’s interaction behavior. The vortex visualization and rotation magnitude were characterized by the Liutex method. Quantitatively, the influence of nozzle clogging resulted in block rates of 0% to 45.9% on the flow and vortex distribution in the mold, and the characteristics of the steel–slag interface fluctuation were well verified in the industrial experiment. Full article
Show Figures

Figure 1

12 pages, 1928 KiB  
Article
Bone Temperature Variation Using a 3D-Printed Surgical Guide with Internal Irrigation
by Michele Stocchero, Stefano Sivolella, Giulia Brunello, Arianna Zoppello, Francesco Cavallin and Lisa Biasetto
Appl. Sci. 2021, 11(6), 2588; https://doi.org/10.3390/app11062588 - 14 Mar 2021
Cited by 10 | Viewed by 3211
Abstract
Bone overheating is a possible cause of implants early failure. When a surgical guide is used, the risk of heat injury is greater due to the reduced efficacy of the irrigation. The aim of this ex vivo study was to evaluate the effect [...] Read more.
Bone overheating is a possible cause of implants early failure. When a surgical guide is used, the risk of heat injury is greater due to the reduced efficacy of the irrigation. The aim of this ex vivo study was to evaluate the effect of an additional built-in irrigation on bone temperature variation during implant osteotomy. Twelve bovine ribs were used. Cone beam computerized tomography (CBCT) was performed and a 3D-printed surgical guide with additional built-in irrigation tubes was produced for each rib. A total of 48 osteotomies were prepared, to compare the supplementary internal irrigation system (Group A) with external irrigation alone (Group B), no irrigation (Group C) and with free-hand surgery with external irrigation (Group D). Temperature was measured by three thermocouples placed at depths of 1.5, 7, and 12 mm. The largest temperature variation at each thermocouple showed median values of 3.0 °C, 1.9 °C, and 2.3 °C in Group 1; 2.3 °C, 1.7 °C, and 0.9 °C in Group 2; 3.2 °C, 1.6 °C, and 2.0 °C in Group 3; 2.0 °C, 2.0 °C, and 1.3 °C in Group 4, respectively. No differences were found among the four groups. In general, the highest temperature increase was observed with the use of the first drill (cortical perforator). Post-experimental CBCT revealed the presence of radiopaque material clogging the aperture of the internal irrigation channels. Additional internal irrigation was not found to significantly contribute to decrease bone temperature in this ex vivo setting. Full article
(This article belongs to the Special Issue New Materials and Technologies for Implant Dentistry)
Show Figures

Figure 1

15 pages, 3196 KiB  
Article
Specific Types and Adaptability Evaluation of Managed Aquifer Recharge for Irrigation in the North China Plain
by Shuai Liu, Weiping Wang, Shisong Qu, Yan Zheng and Wenliang Li
Water 2020, 12(2), 562; https://doi.org/10.3390/w12020562 - 18 Feb 2020
Cited by 6 | Viewed by 3549
Abstract
The North China Plain is the main grain production district in China, with a large area of well irrigation resulting in a large groundwater depression cone. In the 1970s and 1980s, small-scale managed aquifer recharge (MAR) projects were developed to recharge shallow groundwater, [...] Read more.
The North China Plain is the main grain production district in China, with a large area of well irrigation resulting in a large groundwater depression cone. In the 1970s and 1980s, small-scale managed aquifer recharge (MAR) projects were developed to recharge shallow groundwater, which played an important role in ensuring stable and high crop yields. MAR projects are divided into 10 types based on local water conservancy characteristics. The combined use of well–canal irrigation has been widespread in the Yellow River Irrigation District of Shandong Province for nearly 40 years, where canals play multiple roles of transporting and storing Yellow River water or local surface water, recharging groundwater and providing canal irrigation. Moreover, the newly developed open channel–underground perforated pipe–shaft–water saving irrigation system can further expand the scope and amount of groundwater recharge and prevent system clogging through three measures. Finally, an adaptability zoning evaluation system of water spreading has been established in Liaocheng City of Shandong Province based on the following five factors: groundwater depth, thickness of fine sand, specific yield, irrigation return flow, and groundwater extraction intensity. The results show that MAR is more adaptable to the western region than to the eastern and central regions. Full article
(This article belongs to the Special Issue Managed Aquifer Recharge for Water Resilience)
Show Figures

Figure 1

Back to TopTop