Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = conductor casing drilling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2281 KB  
Article
ECD Prediction Model for Riser Drilling Annulus in Ultra-Deepwater Hydrate Formations
by Yanjun Li, Shujie Liu, Yilong Xu, Geng Zhang, Hongwei Yang, Jun Li and Yangfeng Ren
Processes 2025, 13(10), 3044; https://doi.org/10.3390/pr13103044 - 24 Sep 2025
Viewed by 55
Abstract
To address the challenges of accurately predicting and controlling the annular equivalent circulating density (ECD) in ultra-deepwater gas hydrate-bearing formations of the Qiongdongnan Basin, where joint production of hydrates and shallow gas through dual horizontal wells faces a narrow safe pressure window and [...] Read more.
To address the challenges of accurately predicting and controlling the annular equivalent circulating density (ECD) in ultra-deepwater gas hydrate-bearing formations of the Qiongdongnan Basin, where joint production of hydrates and shallow gas through dual horizontal wells faces a narrow safe pressure window and hydrate decomposition effects, this study develops an ECD prediction model that incorporates riser drilling operations. The model couples four sub-models, including the static equivalent density of drilling fluid, annular pressure loss, wellbore temperature–pressure field, and hydrate decomposition rate, and is solved iteratively using MatlabR2024a. The results show that hydrate cuttings begin to decompose in the upper section of the riser (at a depth of approximately 600 m), causing a reduction of about 2 °C in wellhead temperature, a decrease of 0.15 MPa in bottomhole pressure, and an 8 kg/m3 reduction in ECD at the toe of the horizontal section. Furthermore, sensitivity analysis indicates that increasing the rate of penetration (ROP), drilling fluid density, and flow rate significantly elevates annular ECD. When ROP exceeds 28 m/h, the initial drilling fluid density is greater than 1064 kg/m3, or the drilling fluid flow rate is higher than 21 L/s, the risk of formation loss becomes considerable. The model was validated against field data from China’s first hydrate trial production, achieving a prediction accuracy of 93%. This study provides theoretical support and engineering guidance for safe drilling and hydraulic parameter optimization in ultra-deepwater hydrate-bearing formations. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 2559 KB  
Article
Research on Lateral Load Bearing Characteristics of Deepwater Drilling Conductor Suction Pile
by Shuzhan Li, Jin Yang, Guojing Zhu, Jiakang Wang, Yi Huang and Kun Jiang
Energies 2024, 17(5), 1163; https://doi.org/10.3390/en17051163 - 29 Feb 2024
Cited by 2 | Viewed by 1680
Abstract
The vast reserves of natural gas hydrates in offshore areas present significant challenges to development. Surface well construction technology is crucial for the extraction of deepwater natural gas hydrates. To ensure the safety of the subsea wellhead during the drilling process for deepwater [...] Read more.
The vast reserves of natural gas hydrates in offshore areas present significant challenges to development. Surface well construction technology is crucial for the extraction of deepwater natural gas hydrates. To ensure the safety of the subsea wellhead during the drilling process for deepwater natural gas hydrates, a novel conductor suction pile device has been designed, comprising a combination of suction piles and surface conductors. And research has been conducted to investigate the lateral stability characteristics of the conductor suction pile. Drawing upon the pile foundation load-bearing theory and the equilibrium of the differential element, a theoretical analysis model and corresponding governing equations of the conductor suction pile system are established. A solution for a multi-point boundary value problem by simplifying the conductor suction pile system into a two-end free beam is proposed. The governing equations are then converted into a first-order differential equation system, and the four-stage Lobatto IIIa collocation method program for the multi-point boundary value problem is developed and resolved using MATLAB 2023a. Furthermore, a case study of a well in the South China Sea elucidates the effects of wellhead load and seabed soil properties on the lateral load-bearing capacity of the conductor suction pile system, verifying the collocation method’s validity against the results from the finite difference method. After conducting a comparative analysis of the lateral load-bearing performance between conductor suction piles and traditional surface conductors, it is observed that conductor suction piles exhibit lower horizontal displacement and bending moments compared to surface conductors. Therefore, conductor suction piles demonstrate a substantial safety margin. The research findings provide a theoretical basis for the lateral stability of conductor suction piles during deepwater natural gas hydrate drilling. This offers a safe and efficient method for surface well construction in the extraction of natural gas hydrates. Full article
Show Figures

Figure 1

21 pages, 8007 KB  
Article
Analytical Model for Evaluating the Reliability of Vias and Plated Through-Hole Pads on PCBs
by Maksim A. Korobkov, Fedor V. Vasilyev and Olga V. Khomutskaya
Inventions 2023, 8(3), 77; https://doi.org/10.3390/inventions8030077 - 31 May 2023
Cited by 3 | Viewed by 2523
Abstract
Currently, there is a need to increase the density of interconnections on printed circuit boards (PCBs). Does this mean that the only option for quality PCB manufacturing is to proportionally increase precision of equipment, or is there another way? One of the main [...] Read more.
Currently, there is a need to increase the density of interconnections on printed circuit boards (PCBs). Does this mean that the only option for quality PCB manufacturing is to proportionally increase precision of equipment, or is there another way? One of the main constraints on increasing the density of PCB interconnections is posed by the transition holes. As the number of conductive layers increases, the number of vias increases and they cover a significant space on the PCB. On the other hand, reducing the size of the vias is limited by the capability of spatial alignment of the PCB stack during manufacturing. There are standards that set limits for the design of contact pads on a PCB (IPC-A-600G, IPC-6012B). However, depending on the precision of production, the contact pads may be of poor quality. This raises the issue of determining the reliability of a contact pad with defined parameters at the design stage, taking into account manufacturing capabilities. This research proposes an analytical method for evaluation of reliability of a via or plated through-hole based on calculation of its probability of production in accordance with the current standards. On the basis of the method, a model was developed both for the case of a contact pad without any conductors connected to it (nonfunctional contact pad) and for the real case with a connected conductor. The model estimates the probability of making an acceptable via for a given reliability class depending on parameters such as the conductor width (minimum permissible and usable), drilled hole diameter, and pad diameter, as well as the accuracy of the drilling operation. The analysis of the modeling results showed that for the real case, a reduction in the reliability class would insignificantly affect the probability of making an acceptable via due to the tight limitation on the connection place of the conductor and the contact pad. In conclusion, we propose an algorithm for determining the optimal parameters of teardrops to minimize the negative impact of the conductor on the reliability of the vias. Full article
(This article belongs to the Special Issue Recent Advances and New Trends in Signal Processing)
Show Figures

Figure 1

20 pages, 3415 KB  
Article
Qualitative and Quantitative Analysis of the Stability of Conductors in Riserless Mud Recovery System
by Rulei Qin, Benchong Xu, Haowen Chen, Qiuping Lu, Changping Li, Jiarui Wang, Qizeng Feng, Xiaolin Liu and Linqing Wang
Energies 2022, 15(20), 7657; https://doi.org/10.3390/en15207657 - 17 Oct 2022
Cited by 2 | Viewed by 2564
Abstract
Riserless Mud Recovery (RMR) technology, as an emerging and efficient drilling method, is advantageous to reduce the shallow flow hazards and the number of casings. The wave current effect is one of the reasons limiting the application of RMR technology in deep and [...] Read more.
Riserless Mud Recovery (RMR) technology, as an emerging and efficient drilling method, is advantageous to reduce the shallow flow hazards and the number of casings. The wave current effect is one of the reasons limiting the application of RMR technology in deep and ultra-deep water, and fewer quantitative and qualitative analyses of the effect of the current are made on the stability of conductors. This paper investigates the influence of the overturning moment generated by the continuous subsea internal wave flow and the soil resistance to the conductor. The numerical simulation software ABAQUS is used to study the effects of sea state recurrence period, seabed soil properties, conductor material, driving depth in the mud, and conductor wellhead height on the stability of the conductor, and the influence weights of the factors affecting the stability of the conductor are analyzed using the weight analysis algorithm of extreme learning machine-mean impact value (ELM-MIV). Finally, the qualitative and quantitative analyses affecting the stability of the conductor are carried out, which provide reference values for the application of the RMR technology. Full article
Show Figures

Figure 1

10 pages, 3927 KB  
Article
Modified Model for Shallow Soil Strength Recovery Calculation during Set-Up Periods of Jetted Conductor—A Case Study of Equatorial Guinea Bay Deep-Water Drilling
by Wei Yan, Said Juma Kambi, Xin Huang, Hai Lin, Hailong Liu and Jingen Deng
Energies 2021, 14(16), 4940; https://doi.org/10.3390/en14164940 - 12 Aug 2021
Viewed by 3644
Abstract
Jetted conductor setting depth is crucial for deep-water drilling. This paper presents an innovative method for determining the shallow soil resistance strength recovery factor based on the field data of Equatorial Guinea bay. It shows that the soil strength recovery factor of Equatorial [...] Read more.
Jetted conductor setting depth is crucial for deep-water drilling. This paper presents an innovative method for determining the shallow soil resistance strength recovery factor based on the field data of Equatorial Guinea bay. It shows that the soil strength recovery factor of Equatorial Guinea bay is lower than that of the Gulf of Mexico. The conductor setting depth calculation referring to other place will have a high risk of wellhead sinking. According to the newly established designing charts, the conductor setting depth was recommended for the S1 well. Each preferred set-up period requires a specific setting depth. If the chosen set-up period is 2 days, the expected setting depth of a 36″ conductor should be 250 ft (76.2 m) and, similarly, 295 ft (89.9 m) for a 30″ conductor. The relationship between set-up period and surface conductor setting depth is established as well. Wellhead landed load appears to be the crucial factor for determining the conductor setting depth. The rationality of the newly developed shallow soil strength recovery model for the Equatorial Guinea deep-water block was also confirmed by the field data. Full article
Show Figures

Figure 1

Back to TopTop