Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = conductive fabric RFID tag

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 25383 KiB  
Article
RFID Sensor with Integrated Energy Harvesting for Wireless Measurement of dc Magnetic Fields
by Shijie Fu, Greg E. Bridges and Behzad Kordi
Sensors 2025, 25(10), 3024; https://doi.org/10.3390/s25103024 - 10 May 2025
Viewed by 860
Abstract
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and [...] Read more.
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and there is a need for wireless sensing methods with high accuracy and a dynamic range. Conventional methods require direct contact with the high-voltage conductors and utilize bulky and complex equipment. In this paper, an ultra-high-frequency (UHF) radio frequency identification (RFID)-based sensor is introduced for the monitoring of the dc current of an HVdc transmission line. The sensor is composed of a passive RFID tag with a custom-designed antenna, integrated with a Hall effect magnetic field device and an RF power harvesting unit. The dc current is measured by monitoring the dc magnetic field around the conductor using the Hall effect device. The internal memory of the RFID tag is encoded with the magnetic field data. The entire RFID sensor can be wirelessly powered and interrogated using a conventional RFID reader. The advantage of this approach is that the sensor does not require batteries and does not need additional maintenance during its lifetime. This is an important feature in a high-voltage environment where any maintenance requires either an outage or special equipment. In this paper, the detailed design of the RFID sensor is presented, including the antenna design and measurements for both the RFID tag and the RF harvesting section, the microcontroller interfacing design and testing, the magnetic field sensor calibration, and the RF power harvesting section. The UHF RFID-based magnetic field sensor was fabricated and tested using a laboratory experimental setup. In the experiment, a 40 mm-diameter-aluminum conductor, typically used in 500 kV HVdc transmission lines carrying a dc current of up to 1200 A, was used to conduct dc current tests for the fabricated sensor. The sensor was placed near the conductor such that the Hall effect device was close to the surface of the conductor, and readings were acquired by the RFID reader. The sensitivity of the entire RFID sensor was 30 mV/mT, with linear behavior over a magnetic flux density range from 0 mT to 4.5 mT. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

17 pages, 5259 KiB  
Article
Study on the Impact of Laser Settings on Parameters of Induced Graphene Layers Constituting the Antenna of UHF RFIDLIG Transponders
by Aleksandr Kolomijec, Piotr Jankowski-Mihułowicz, Mariusz Węglarski and Nikita Bailiuk
Sensors 2025, 25(6), 1906; https://doi.org/10.3390/s25061906 - 19 Mar 2025
Cited by 1 | Viewed by 602
Abstract
The aim of the research is to investigate the impact of laser operation parameters on the LIG (laser-induced graphene) process. It focuses on evaluating the feasibility of using the induced conductive layers to create antenna circuits that are dedicated to radio-frequency identification (RFID) [...] Read more.
The aim of the research is to investigate the impact of laser operation parameters on the LIG (laser-induced graphene) process. It focuses on evaluating the feasibility of using the induced conductive layers to create antenna circuits that are dedicated to radio-frequency identification (RFID) technology. Given the specific design of textile RFIDtex transponders, applying the LIG technique to fabricate antenna modules on a flexible substrate (e.g., Kapton) opens new possibilities for integrating RFID labels with modern materials and products. The paper analyses the efficiency of energy and data transmission in the proposed innovative UHF RFIDLIG tags. The signal strength, read range, and effectiveness are estimated in the experimental setup, providing key insights into the performance of the devices. Based on the obtained results, it can be concluded that changes in laser cutting parameters, the size of the induced graphene layer, and the method of fixing the Kapton substrate significantly affect the quality of the cutting/engraving components and the conductivity of burned paths. However, these changes do not directly affect the correct operation of the RFIDLIG transponders, owing to the fact that these structures are resistant to external impacts. Nevertheless, an increased range of data readout from the RFIDLIG tags can be achieved by using graphene paths with higher conductivity. The obtained results confirm the validity of the proposed concept and provide a foundation for further research on adapting the LIG method to automated logistics, ultimately leading to the development of more versatile and innovative solutions for identification processes. Full article
(This article belongs to the Special Issue Sensors Technologies for Measurements and Signal Processing)
Show Figures

Figure 1

9 pages, 2349 KiB  
Article
Anti-High-Power Microwave RFID Tag Based on Highly Thermal Conductive Graphene Films
by Xueyu Liu, Rongguo Song, Huaqiang Fu, Wei Zhu, Kaolin Luo, Yang Xiao, Bohan Zhang, Shengxiang Wang and Daping He
Materials 2023, 16(9), 3370; https://doi.org/10.3390/ma16093370 - 25 Apr 2023
Cited by 4 | Viewed by 2124
Abstract
In this paper, a radio frequency identification (RFID) tag is designed and fabricated based on highly electrical and thermal conductive graphene films. The tag operates in the ultrahigh-frequency (UHF) band, which is suitable for high-power microwave environments of at least 800 W. We [...] Read more.
In this paper, a radio frequency identification (RFID) tag is designed and fabricated based on highly electrical and thermal conductive graphene films. The tag operates in the ultrahigh-frequency (UHF) band, which is suitable for high-power microwave environments of at least 800 W. We designed the protection structure to avoid charge accumulation at the antenna’s critical positions. In the initial state, the read range of the anti-high-power microwave graphene film tag (AMGFT) is 10.43 m at 915 MHz. During the microwave heating experiment, the aluminum tag causes a visible electric spark phenomenon, which ablates the aluminum tag and its attachment, resulting in tag failure and serious safety issues. In contrast, the AMGFT is intact, with its entire read range curve growing and returning to its initial position as its temperature steadily decreases back to room temperature. In addition, the proposed dual-frequency tag further confirms the anti-high-power microwave performance of graphene film tags and provides a multi-scenario interactive application. Full article
Show Figures

Figure 1

15 pages, 8041 KiB  
Review
Constraints of Using Conductive Screen-Printing for Chipless RFID Tags with Enhanced RCS Response
by Milan Svanda, Jan Machac and Milan Polivka
Appl. Sci. 2023, 13(1), 148; https://doi.org/10.3390/app13010148 - 22 Dec 2022
Cited by 3 | Viewed by 1952
Abstract
The analysis and experimental verification of the properties of four types of chipless RFID tags with an increased RCS response level designed and fabricated by conductive screen-printing using silver paste on foil and paper substrates was performed. The analytical formula for the quality [...] Read more.
The analysis and experimental verification of the properties of four types of chipless RFID tags with an increased RCS response level designed and fabricated by conductive screen-printing using silver paste on foil and paper substrates was performed. The analytical formula for the quality factor of microstrip structures with a reduced conductivity of the metal layers was used to predict the changes and detectability of the backscattered RCS response. The analysis provides insight into the limitations and outlines the possibilities of chipless structures screen-printed on foil and paper substrates, which can be of significant benefit to further reducing the cost, and to speed up the production of these tags for identification and sensing purposes. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes)
Show Figures

Figure 1

13 pages, 1407 KiB  
Article
Optimization of a Handwriting Method by an Automated Ink Pen for Cost-Effective and Sustainable Sensors
by Florin C. Loghin, José F. Salmerón, Paolo Lugli, Markus Becherer, Aniello Falco and Almudena Rivadeneyra
Chemosensors 2021, 9(9), 264; https://doi.org/10.3390/chemosensors9090264 - 16 Sep 2021
Cited by 2 | Viewed by 3009
Abstract
In this work, we present a do-it-yourself (DIY) approach for the environmental-friendly fabrication of printed electronic devices and sensors. The setup consists only of an automated handwriting robot and pens filled with silver conductive inks. Here, we thoroughly studied the fabrication technique and [...] Read more.
In this work, we present a do-it-yourself (DIY) approach for the environmental-friendly fabrication of printed electronic devices and sensors. The setup consists only of an automated handwriting robot and pens filled with silver conductive inks. Here, we thoroughly studied the fabrication technique and different optimized parameters. The best-achieved results were 300 mΩ/sq as sheet resistance with a printing resolution of 200 µm. The optimized parameters were used to manufacture fully functional electronics devices: a capacitive sensor and a RFID tag, essential for the remote reading of the measurements. This technique for printed electronics represents an alternative for fast-prototyping and ultra-low-cost fabrication because of both the cheap equipment required and the minimal waste of materials, which is especially interesting for the development of cost-effective sensors. Full article
Show Figures

Figure 1

16 pages, 6190 KiB  
Communication
UHF RFID Conductive Fabric Tag Design Optimization
by Franck Kimetya Byondi and Youchung Chung
Sensors 2021, 21(16), 5380; https://doi.org/10.3390/s21165380 - 10 Aug 2021
Cited by 7 | Viewed by 3342
Abstract
This paper presents the design of a 920 MHz Ultra High Frequency (UHF) band radio frequency identification (RFID) conductive fabric tag antenna. The DC (Direct Current) resistance and impedance of the conductive fabric are measured by a DC multimeter and by a network [...] Read more.
This paper presents the design of a 920 MHz Ultra High Frequency (UHF) band radio frequency identification (RFID) conductive fabric tag antenna. The DC (Direct Current) resistance and impedance of the conductive fabric are measured by a DC multimeter and by a network analyzer at a UHF frequency band. The conductivities of the fabrics are calculated with their measured DC resistance and impedance values, respectively. The conductivities of the fabric are inserted into the CST simulation program to simulate the fabric tag antenna designs, and the results of the tag designs with two conductivities are compared. Two fabric UHF RFID tag antennas with a T-Matching structure, one with the name-tag size of 80 × 40 mm, and another with 40 × 23 are simulated and measured the characteristics of tag antennas. The simulated and measured results are compared by reflection coefficient S11, radar cross-section and reading range. The reading range of the 80 × 40 mm fabric tag antenna is about 4 m and 0.5 m for the 40 × 23 size tag. These fabric tags can be easily applied to an entrance control system as they can be attached to other fabrics and clothes. Full article
(This article belongs to the Special Issue RF Sensors: Design, Optimization and Applications)
Show Figures

Figure 1

14 pages, 4938 KiB  
Article
Printable Stretchable Silver Ink and Application to Printed RFID Tags for Wearable Electronics
by Tao Zhong, Ning Jin, Wei Yuan, Chunshan Zhou, Weibing Gu and Zheng Cui
Materials 2019, 12(18), 3036; https://doi.org/10.3390/ma12183036 - 19 Sep 2019
Cited by 40 | Viewed by 5599
Abstract
A printable elastic silver ink has been developed, which was made of silver flakes, dispersant, and a fluorine rubber and could be sintered at a low temperature. The printed elastic conductors showed low resistivity at 21 μΩ·cm, which is about 13.2 times of [...] Read more.
A printable elastic silver ink has been developed, which was made of silver flakes, dispersant, and a fluorine rubber and could be sintered at a low temperature. The printed elastic conductors showed low resistivity at 21 μΩ·cm, which is about 13.2 times of bulk silver (1.59 μΩ·cm). Their mechanical properties were investigated by bending, stretching, and cyclic endurance tests. It was found that upon stretching the resistance of printed conductors increased due to deformation and small cracks appeared in the conductor, but was almost reversible when the strain was removed, and the recovery of conductivity was found to be time dependent. Radio-frequency identification (RFID) tags were fabricated by screen printing the stretchable silver ink on a stretchable fabric (lycra). High performance of tag was maintained even with 1000 cycles of stretching. As a practical example of wearable electronics, an RFID tag was printed directly onto a T-shirt, which demonstrated its normal working order in a wearing state. Full article
(This article belongs to the Special Issue Electronic Materials and Devices)
Show Figures

Figure 1

12 pages, 3205 KiB  
Article
A Frequency Signature RFID Chipless Tag for Wearable Applications
by Laura Corchia, Giuseppina Monti and Luciano Tarricone
Sensors 2019, 19(3), 494; https://doi.org/10.3390/s19030494 - 25 Jan 2019
Cited by 35 | Viewed by 5135
Abstract
In this paper, a frequency-signature Radio-Frequency Identification (RFID) chipless tag for wearable applications is presented. The results achieved for a fully-textile solution guaranteeing a seamless integration in clothes are reported and discussed. The proposed tag consists of two planar monopole antennas and a [...] Read more.
In this paper, a frequency-signature Radio-Frequency Identification (RFID) chipless tag for wearable applications is presented. The results achieved for a fully-textile solution guaranteeing a seamless integration in clothes are reported and discussed. The proposed tag consists of two planar monopole antennas and a 50 Ω microstrip line loaded with multiple resonators. In order to achieve a compact size, the resonators are slotted on the ground plane of the microstrip line. As for the antennas, the same geometry was exploited for both the TX and the RX tag antenna. In particular, it consists of a proximity fed planar monopole on a ground plane. The selected geometry guarantees easy integration with the multi-resonator structure. Numerical and experimental data referring to a 2-bit implementation are presented and discussed. For fabricating all the prototypes, a layer of pile was used as a substrate, while an adhesive non-woven conductive fabric was exploited for the fabrication of the conductive parts. Experimental tests demonstrate that although the performance of the final device strongly depends on the properties of the used materials and on the imperfections of the fabrication process, the proposed frequency-signature RFID chipless tag is suitable for wearable applications, such as anti-counterfeiting systems and laundry labels. Full article
(This article belongs to the Special Issue Passive Electromagnetic Sensors for Autonomous Wireless Networks)
Show Figures

Figure 1

19 pages, 6928 KiB  
Article
Design and Implementation of a RF Powering Circuit for RFID Tags or Other Batteryless Embedded Devices
by Dongsheng Liu, Rencai Wang, Ke Yao, Xuecheng Zou and Liang Guo
Sensors 2014, 14(8), 14839-14857; https://doi.org/10.3390/s140814839 - 13 Aug 2014
Cited by 11 | Viewed by 8664
Abstract
A RF powering circuit used in radio-frequency identification (RFID) tags and other batteryless embedded devices is presented in this paper. The RF powering circuit harvests energy from electromagnetic waves and converts the RF energy to a stable voltage source. Analysis of a NMOS [...] Read more.
A RF powering circuit used in radio-frequency identification (RFID) tags and other batteryless embedded devices is presented in this paper. The RF powering circuit harvests energy from electromagnetic waves and converts the RF energy to a stable voltage source. Analysis of a NMOS gate-cross connected bridge rectifier is conducted to demonstrate relationship between device sizes and power conversion efficiency (PCE) of the rectifier. A rectifier with 38.54% PCE under normal working conditions is designed. Moreover, a stable voltage regulator with a temperature and voltage optimizing strategy including adoption of a combination resistor is developed, which is able to accommodate a large input range of 4 V to 12 V and be immune to temperature variations. Latch-up prevention and noise isolation methods in layout design are also presented. Designed with the HJTC 0.25 μm process, this regulator achieves 0.04 mV/°C temperature rejection ratio (TRR) and 2.5 mV/V voltage rejection ratio (VRR). The RF powering circuit is also fabricated in the HJTC 0.25 μm process. The area of the RF powering circuit is 0.23 × 0.24 mm2. The RF powering circuit is successfully integrated with ISO/IEC 15693-compatible and ISO/IEC 14443-compatible RFID tag chips. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

16 pages, 1085 KiB  
Article
Humidity Sensors Printed on Recycled Paper and Cardboard
by Matija Mraović, Tadeja Muck, Matej Pivar, Janez Trontelj and Anton Pleteršek
Sensors 2014, 14(8), 13628-13643; https://doi.org/10.3390/s140813628 - 28 Jul 2014
Cited by 59 | Viewed by 11533
Abstract
Research, design, fabrication and results of various screen printed capacitive humidity sensors is presented in this paper. Two types of capacitive humidity sensors have been designed and fabricated via screen printing on recycled paper and cardboard, obtained from the regional paper and cardboard [...] Read more.
Research, design, fabrication and results of various screen printed capacitive humidity sensors is presented in this paper. Two types of capacitive humidity sensors have been designed and fabricated via screen printing on recycled paper and cardboard, obtained from the regional paper and cardboard industry. As printing ink, commercially available silver nanoparticle-based conductive ink was used. A considerable amount of work has been devoted to the humidity measurement methods using paper as a dielectric material. Performances of different structures have been tested in a humidity chamber. Relative humidity in the chamber was varied in the range of 35%–80% relative humidity (RH) at a constant temperature of 23 °C. Parameters of interest were capacitance and conductance of each sensor material, as well as long term behaviour. Process reversibility has also been considered. The results obtained show a mainly logarithmic response of the paper sensors, with the only exception being cardboard-based sensors. Recycled paper-based sensors exhibit a change in value of three orders of magnitude, whereas cardboard-based sensors have a change in value of few 10s over the entire scope of relative humidity range (RH 35%–90%). Two different types of capacitor sensors have been investigated: lateral (comb) type sensors and modified, perforated flat plate type sensors. The objective of the present work was to identify the most important factors affecting the material performances with humidity, and to contribute to the development of a sensor system supported with a Radio Frequency Identification (RFID) chip directly on the material, for use in smart packaging applications. Therefore, the authors built a passive and a battery-supported wireless module based on SL900A smart sensory tag’s IC to achieve UHF-RFID functionality with data logging capability. Full article
(This article belongs to the Special Issue Printed Sensors)
Show Figures

Graphical abstract

Back to TopTop