Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = concave shapes of the roof

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11784 KB  
Article
Research on the Causes of the Concave Shapes of Traditional Chinese Building Roofs from the Construction Perspective
by Xiang Chen, Chenyuan Wang, Jie Sun and Weijie Xia
Buildings 2025, 15(14), 2582; https://doi.org/10.3390/buildings15142582 - 21 Jul 2025
Viewed by 588
Abstract
Exploring the causes of the concave curved form of the roofs in traditional Chinese architecture is key to understanding its unique esthetics and structural logic. Regarding its causes, the academic community offers various explanations, including esthetics and function, but research that delves deeply [...] Read more.
Exploring the causes of the concave curved form of the roofs in traditional Chinese architecture is key to understanding its unique esthetics and structural logic. Regarding its causes, the academic community offers various explanations, including esthetics and function, but research that delves deeply into specific construction techniques and material limitations and systematically explains how they lead to the precise roof forms is relatively insufficient, which limits our comprehensive understanding of the deep generative logic of this unique form. This study aimed to bridge this gap by systematically exploring the causes of the concave curved form of roofs in traditional Chinese architecture (such as flying eaves, upturned corners, and Ju zhe) from the perspective of construction technology. Through a systematic review of historical literature (especially Yingzao fashi (Treatise on Architectural Methods)); the empirical investigation and analysis of typical architectural examples; detailed research on the structural practices, material properties (especially the creep behavior of timber), and construction techniques of key timber components such as flying rafters, hip rafters, and rafters; and mechanical principles and computational simulation, this study found that the concave curved forms of different parts of the roof, such as the eaves (flying rafters), corners (corner upturn), and main body (Ju zhe), are not purely esthetic choices but are, to a large extent, technical responses or inevitable results stemming from objective construction constraints of the time, including limitations on timber length, component connection methods, structural load distribution, and long-term deformation. Based on these findings, this study proposes the concept of “Passive Form” to summarize this form-generation mechanism, emphasizing that architectural forms are not solely determined by subjective will but are rooted in the adaptation and transformation of real constraints in construction, providing a technical perspective rooted in practice for understanding the forms of Chinese traditional architecture. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

15 pages, 8253 KB  
Article
Experimental Study on the Influence of Planar Configuration on Wind Load Distribution Characteristics of High-Rise Buildings with Whole Wind Azimuths
by Qiuhua Chen and Xiaoxi Zhang
Energies 2024, 17(15), 3793; https://doi.org/10.3390/en17153793 - 1 Aug 2024
Cited by 1 | Viewed by 992
Abstract
Wind resistance performance research on the influence of the exterior features of high-rise buildings is an essential part of structure design. In this paper, the wind resistance tests of three high-rise building models with different concavity shapes on the horizontal plane were investigated [...] Read more.
Wind resistance performance research on the influence of the exterior features of high-rise buildings is an essential part of structure design. In this paper, the wind resistance tests of three high-rise building models with different concavity shapes on the horizontal plane were investigated using the wind tunnel experiment. The CAARC (Commonwealth Advisory Aeronautical Research Council) standard high-rise model was adopted as the background model (BG model for short), and the other two comparison groups with different planar configurations were designed, one with concave corners around the building (T1 model) and the other with concavity in the middle of the long side of the building (T2 model). The distribution laws of the average wind pressure coefficients of the building facades and roofs under the whole wind azimuths were analyzed comprehensively. The results show that the external shape plays a certain role in wind pressure distribution. Among the three high-rise building models, the most unfavorable positive wind pressure coefficient on the facades occurs in the T2 model (a 4.7% increment compared with the BG model), while the most unfavorable negative wind pressure coefficient appears in the T1 model (a 25% increment compared with BG model). Furthermore, it is noted that the architectural appearance of the T1 model makes the flow field around the building more streamlined, reflecting more favorable wind-resistance performance, including a maximum reduction of 47.2% in the least stresses per unit area on the roof. The research in this paper can provide some references for the design of different exterior features of high-rise buildings. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

21 pages, 36445 KB  
Article
Integrating Smart City Principles in the Numerical Simulation Analysis on Passive Energy Saving of Small and Medium Gymnasiums
by Feng Qian, Hongliang Sun and Li Yang
Smart Cities 2024, 7(4), 1971-1991; https://doi.org/10.3390/smartcities7040078 - 25 Jul 2024
Cited by 4 | Viewed by 1935
Abstract
With the increasing energy consumption in buildings, the proportion of energy consumption in public buildings continues to grow. As an essential component of public buildings, sports buildings are receiving more attention regarding energy-saving technologies. This paper aims to study the passive energy-saving design [...] Read more.
With the increasing energy consumption in buildings, the proportion of energy consumption in public buildings continues to grow. As an essential component of public buildings, sports buildings are receiving more attention regarding energy-saving technologies. This paper aims to study the passive energy-saving design methods of small-and medium-sized sports halls in hot summer and cold winter regions, exploring how to reduce building energy consumption by improving the spatial design and thermal performance of the enclosure structures of sports halls. Taking the Wuhu County Sports Center as an example, this study uses computer simulation software to analyze the building’s wind environment and the thermal performance of its external walls and roof. The results show that the large volume of the sports hall significantly impacts the distribution of wind speed and pressure around it, and this impact decreases with height. The thermal simulation of the enclosure structures demonstrates that adding insulation layers to the interior and exterior of the walls and roof of the sports hall is an effective way to reduce energy consumption in both winter and summer. Additionally, wind environment simulations of different roof shapes reveal that flat roofs have the most significant blocking effect on wind and are prone to inducing strong vortices on the leeward side; concave arch roofs have the least blocking effect on airflow, and arch and wave-shaped roofs maintain lower vortex intensity on the leeward side. Hopefully, this study can provide significant references for the energy-saving design of future small- and medium-sized sports buildings. Full article
Show Figures

Figure 1

18 pages, 9961 KB  
Article
Bond Shear Tests to Evaluate Different CFRP Shear Strengthening Strategies for I-Shaped Concrete Cross-Sections
by Muhammad Arslan Yaqub, Christoph Czaderski and Stijn Matthys
Materials 2024, 17(13), 3342; https://doi.org/10.3390/ma17133342 - 5 Jul 2024
Cited by 1 | Viewed by 1172
Abstract
I-shaped concrete girders are widely used in precast bridge and roof construction, making them a common structural component in existing infrastructure. Despite well-established strengthening techniques using various innovative materials, such as externally bonded carbon fibre reinforced polymer (CFRP) reinforcement, the shear strengthening of [...] Read more.
I-shaped concrete girders are widely used in precast bridge and roof construction, making them a common structural component in existing infrastructure. Despite well-established strengthening techniques using various innovative materials, such as externally bonded carbon fibre reinforced polymer (CFRP) reinforcement, the shear strengthening of an I-shaped concrete girder is not straightforward. Several research studies have shown that externally bonded CFRP reinforcement might exhibit early debonding at the concave corners of the I-shape, resulting in a marginal increase in shear capacity. This research study aims to assess the performance of two different CFRP shear strengthening strategies for I-shaped concrete cross-sections. In the first strategy, CFRP was bonded along the I-shape of the cross-section with the provision of additional anchorage. In the second strategy, the I-shape was transformed into a rectangular shape by using in-fill blocks over which the CFRP was bonded in a U-configuration. In addition to the strengthening strategies, the investigated parameters included two different materials for the in-fill blocks (conventional and aerated concrete) and two different anchoring schemes (bolted steel plate anchor and CFRP spike anchor). To avoid testing on large-scale girders, a new test methodology has been implemented on concrete I-sections. The test results demonstrate the feasibility of comparing different shear strengthening configurations dedicated to I-sections. Among other findings, the results showed that the local transformation of the I-shape to an equivalent rectangular shape could be a viable solution, resulting in shear strength enhancement of 12% to 53% without and with the anchorages, respectively. Full article
(This article belongs to the Special Issue Strengthening, Repair, and Retrofit of Reinforced Concrete)
Show Figures

Figure 1

12 pages, 4170 KB  
Article
Study on Gas Extraction Technology for Goaf Using L-Shaped Borehole on the Ground
by Longyong Shu
Appl. Sci. 2024, 14(4), 1594; https://doi.org/10.3390/app14041594 - 17 Feb 2024
Cited by 3 | Viewed by 1293
Abstract
This study aimed to examine gas extraction technology in the goaf of an L-shaped borehole in the mining fissure zone of a short-distance coal seam group. The numerical simulation method was used to analyze the failure law of overlying rock during mining, and [...] Read more.
This study aimed to examine gas extraction technology in the goaf of an L-shaped borehole in the mining fissure zone of a short-distance coal seam group. The numerical simulation method was used to analyze the failure law of overlying rock during mining, and a mathematical model was established for gas migration in the mining overburden. Finally, gas extraction tests were performed for the L-shaped borehole in the mining fissure zone. The results showed that as the coal mining project progressed, the damage area of the overlying strata in the goaf became larger, and the plastic damage area of the overlying rock along the strike had a saddle shape, being concave in the middle and convex at both ends. The closer the L-shaped borehole in the mining fissure zone was to the coal seam roof, the greater the amount of air leaking from the working face into the goaf, and the lower the overall gas concentration in the goaf. When the vertical distance of the L-shaped borehole was too high, the ability of the L-shaped borehole to control the gas concentration in the lower goaf was weakened. Moreover, the mining fracture zone was a good space for gas migration and storage. Thus, arranging the L-shaped borehole in this zone can greatly improve the efficiency of borehole gas extraction. According to the overlying rock conditions and mining conditions of Tunlan Mine, the L-shaped borehole was positioned 43 m away from the roof of the coal seam. The extraction rate of the L-shaped borehole reached 9.30 m3∙min−1, and the gas concentration in the corners of the working face was kept below 0.4%, yielding an excellent extraction effect. Full article
(This article belongs to the Special Issue Advanced Methodology and Analysis in Coal Mine Gas Control)
Show Figures

Figure 1

33 pages, 11112 KB  
Article
Procedural Modeling of Buildings Composed of Arbitrarily-Shaped Floor-Plans: Background, Progress, Contributions and Challenges of a Methodology Oriented to Cultural Heritage
by Telmo Adão, Luís Pádua, Pedro Marques, Joaquim João Sousa, Emanuel Peres and Luís Magalhães
Computers 2019, 8(2), 38; https://doi.org/10.3390/computers8020038 - 11 May 2019
Cited by 13 | Viewed by 9984
Abstract
Virtual models’ production is of high pertinence in research and business fields such as architecture, archeology, or video games, whose requirements might range between expeditious virtual building generation for extensively populating computer-based synthesized environments and hypothesis testing through digital reconstructions. There are some [...] Read more.
Virtual models’ production is of high pertinence in research and business fields such as architecture, archeology, or video games, whose requirements might range between expeditious virtual building generation for extensively populating computer-based synthesized environments and hypothesis testing through digital reconstructions. There are some known approaches to achieve the production/reconstruction of virtual models, namely digital settlements and buildings. Manual modeling requires highly-skilled manpower and a considerable amount of time to achieve the desired digital contents, in a process composed by many stages that are typically repeated over time. Both image-based and range scanning approaches are more suitable for digital preservation of well-conserved structures. However, they usually require trained human resources to prepare field operations and manipulate expensive equipment (e.g., 3D scanners) and advanced software tools (e.g., photogrammetric applications). To tackle the issues presented by previous approaches, a class of cost-effective, efficient, and scarce-data-tolerant techniques/methods, known as procedural modeling, has been developed aiming at the semi- or fully-automatic production of virtual environments composed of hollow buildings exclusively represented by outer façades or traversable buildings with interiors, either for expeditious generation or reconstruction. Despite the many achievements of the existing procedural modeling approaches, the production of virtual buildings with both interiors and exteriors composed by non-rectangular shapes (convex or concave n-gons) at the floor-plan level is still seldomly addressed. Therefore, a methodology (and respective system) capable of semi-automatically producing ontology-based traversable buildings composed of arbitrarily-shaped floor-plans has been proposed and continuously developed, and is under analysis in this paper, along with its contributions towards the accomplishment of other virtual reality (VR) and augmented reality (AR) projects/works oriented to digital applications for cultural heritage. Recent roof production-related enhancements resorting to the well-established straight skeleton approach are also addressed, as well as forthcoming challenges. The aim is to consolidate this procedural modeling methodology as a valuable computer graphics work and discuss its future directions. Full article
Show Figures

Figure 1

Back to TopTop