Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = compositional magnetic resonance imaging of cartilage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 351 KiB  
Review
Beyond the Surface: Nutritional Interventions Integrated with Diagnostic Imaging Tools to Target and Preserve Cartilage Integrity: A Narrative Review
by Salvatore Lavalle, Rosa Scapaticci, Edoardo Masiello, Valerio Mario Salerno, Renato Cuocolo, Roberto Cannella, Matteo Botteghi, Alessandro Orro, Raoul Saggini, Sabrina Donati Zeppa, Alessia Bartolacci, Vilberto Stocchi, Giovanni Piccoli and Francesco Pegreffi
Biomedicines 2025, 13(3), 570; https://doi.org/10.3390/biomedicines13030570 - 24 Feb 2025
Cited by 2 | Viewed by 1578
Abstract
This narrative review provides an overview of the various diagnostic tools used to assess cartilage health, with a focus on early detection, nutrition intervention, and management of osteoarthritis. Early detection of cartilage damage is crucial for effective patient management. Traditional diagnostic tools like [...] Read more.
This narrative review provides an overview of the various diagnostic tools used to assess cartilage health, with a focus on early detection, nutrition intervention, and management of osteoarthritis. Early detection of cartilage damage is crucial for effective patient management. Traditional diagnostic tools like radiography and conventional magnetic resonance imaging (MRI) sequences are more suited to detecting late-stage structural changes. This paper highlights advanced imaging techniques, including sodium MRI, T2 mapping, T1ρ imaging, and delayed gadolinium-enhanced MRI of cartilage, which provide valuable biochemical information about cartilage composition, particularly the glycosaminoglycan content and its potential links to nutrition-related factors influencing cartilage health. Cartilage degradation is often linked with inflammation and measurable via markers like CRP and IL-6 which, although not specific to cartilage breakdown, offer insights into the inflammation affecting cartilage. In addition to imaging techniques, biochemical markers, such as collagen breakdown products and aggrecan fragments, which reflect metabolic changes in cartilage, are discussed. Emerging tools like optical coherence tomography and hybrid positron emission tomography–magnetic resonance imaging (PET-MRI) are also explored, offering high-resolution imaging and combined metabolic and structural insights, respectively. Finally, wearable technology and biosensors for real-time monitoring of osteoarthritis progression, as well as the role of artificial intelligence in enhancing diagnostic accuracy through pattern recognition in imaging data are addressed. While these advanced diagnostic tools hold great potential for early detection and monitoring of osteoarthritis, challenges remain in clinical translation, including validation in larger populations and integration into existing clinical workflows and personalized treatment strategies for cartilage-related diseases. Full article
(This article belongs to the Special Issue Applications of Imaging Technology in Human Diseases)
19 pages, 3384 KiB  
Review
MR-Imaging in Osteoarthritis: Current Standard of Practice and Future Outlook
by Jonathan Ehmig, Günther Engel, Joachim Lotz, Wolfgang Lehmann, Shahed Taheri, Arndt F. Schilling, Ali Seif Amir Hosseini and Babak Panahi
Diagnostics 2023, 13(15), 2586; https://doi.org/10.3390/diagnostics13152586 - 3 Aug 2023
Cited by 13 | Viewed by 7734
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that affects millions of people worldwide. Magnetic resonance imaging (MRI) has emerged as a powerful tool for the evaluation and monitoring of OA due to its ability to visualize soft tissues and bone with high [...] Read more.
Osteoarthritis (OA) is a common degenerative joint disease that affects millions of people worldwide. Magnetic resonance imaging (MRI) has emerged as a powerful tool for the evaluation and monitoring of OA due to its ability to visualize soft tissues and bone with high resolution. This review aims to provide an overview of the current state of MRI in OA, with a special focus on the knee, including protocol recommendations for clinical and research settings. Furthermore, new developments in the field of musculoskeletal MRI are highlighted in this review. These include compositional MRI techniques, such as T2 mapping and T1rho imaging, which can provide additional important information about the biochemical composition of cartilage and other joint tissues. In addition, this review discusses semiquantitative joint assessment based on MRI findings, which is a widely used method for evaluating OA severity and progression in the knee. We analyze the most common scoring methods and discuss potential benefits. Techniques to reduce acquisition times and the potential impact of deep learning in MR imaging for OA are also discussed, as these technological advances may impact clinical routine in the future. Full article
(This article belongs to the Special Issue Imaging Diagnosis in Musculoskeletal Medicine)
Show Figures

Figure 1

13 pages, 2436 KiB  
Article
Insights into the Age Dependency of Compositional MR Biomarkers Quantifying the Health Status of Cartilage in Metacarpophalangeal Joints
by Miriam Frenken, Karl Ludger Radke, Emilia Louisa Ernestine Schäfer, Birte Valentin, Lena Marie Wilms, Daniel Benjamin Abrar, Sven Nebelung, Petros Martirosian, Hans-Jörg Wittsack and Anja Müller-Lutz
Diagnostics 2023, 13(10), 1746; https://doi.org/10.3390/diagnostics13101746 - 16 May 2023
Viewed by 1517
Abstract
(1) Background: We aim to investigate age-related changes in cartilage structure and composition in the metacarpophalangeal (MCP) joints using magnetic resonance (MR) biomarkers. (2) Methods: The cartilage tissue of 90 MCP joints from 30 volunteers without any signs of destruction or inflammation was [...] Read more.
(1) Background: We aim to investigate age-related changes in cartilage structure and composition in the metacarpophalangeal (MCP) joints using magnetic resonance (MR) biomarkers. (2) Methods: The cartilage tissue of 90 MCP joints from 30 volunteers without any signs of destruction or inflammation was examined using T1, T2, and T1ρ compositional MR imaging techniques on a 3 Tesla clinical scanner and correlated with age. (3) Results: The T1ρ and T2 relaxation times showed a significant correlation with age (T1ρ: Kendall-τ-b = 0.3, p < 0.001; T2: Kendall-τ-b = 0.2, p = 0.01). No significant correlation was observed for T1 as a function of age (T1: Kendall-τ-b = 0.12, p = 0.13). (4) Conclusions: Our data show an increase in T1ρ and T2 relaxation times with age. We hypothesize that this increase is due to age-related changes in cartilage structure and composition. In future examinations of cartilage using compositional MRI, especially T1ρ and T2 techniques, e.g., in patients with osteoarthritis or rheumatoid arthritis, the age of the patients should be taken into account. Full article
(This article belongs to the Special Issue Imaging Diagnosis in Musculoskeletal Medicine)
Show Figures

Figure 1

11 pages, 1825 KiB  
Article
Proof-of-Concept Double-Blind Placebo-Controlled Trial Measuring Cartilage Composition in Early Rheumatoid Arthritis under TNF-α-Inhibitor Therapy
by Miriam Frenken, Benedikt Ostendorf, Ralph Brinks, Christoph Schleich, Lena M. Wilms, Stefan Vordenbäumen, Anja Müller-Lutz, Jutta G. Richter, Oliver Sander, Gerald Antoch, Matthias Schneider, Xenofon Baraliakos, Daniel B. Abrar and Philipp Sewerin
J. Clin. Med. 2023, 12(6), 2306; https://doi.org/10.3390/jcm12062306 - 16 Mar 2023
Viewed by 1877
Abstract
Low levels of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) values are indicative of cartilage degeneration. Patients with early rheumatoid arthritis are known to have low dGEMRIC values due to inflammatory activity. The additional effect of biological disease-modifying antirheumatic drug (bDMARD) and [...] Read more.
Low levels of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) values are indicative of cartilage degeneration. Patients with early rheumatoid arthritis are known to have low dGEMRIC values due to inflammatory activity. The additional effect of biological disease-modifying antirheumatic drug (bDMARD) and conventional synthetic disease-modifying antirheumatic drug (csDMARD) treatment on cartilage status is still unclear. In this prospective, double-blinded, randomized proof-of-concept clinical trial, patients with early rheumatoid arthritis (disease duration less than 12 months from symptoms onset) were treated with methotrexate + adalimumab (10 patients: 6/4 (f/m)). A control group with methotrexate alone (four patients: 2/2 (f/m)) was used. Cartilage integrity in the metacarpophalangeal joints was compared using dGEMRIC at baseline, 12, and 24 weeks after treatment initiation. A statistically significant increase in dGEMRIC levels was found in the adalimumab group considering the results after 12 and 24 weeks of therapy (p < 0.05) but not in the control group (p: non-significant). After 24 weeks, a tendency towards increased dGEMRIC values under combination therapy was observed, whereas methotrexate alone showed a slight decrease without meeting the criteria of significance (dGEMRIC mean change: +85.8 ms [−156.2–+346.5 ms] vs. 30.75 ms [−273.0–+131.0 ms]; p: non-significant). After 24 weeks of treatment with a combination of methotrexate and adalimumab, a trend indicating improvement in cartilage composition is seen in patients with early rheumatoid arthritis. However, treatment with methotrexate alone showed no change in cartilage composition, as observed in dGEMRIC sequences of metacarpophalangeal joints. Full article
(This article belongs to the Special Issue Diagnostic Imaging of Arthritis)
Show Figures

Figure 1

11 pages, 885 KiB  
Article
Evaluating Lumbar Intervertebral Disc Degeneration on a Compositional Level Using Chemical Exchange Saturation Transfer: Preliminary Results in Patients with Adolescent Idiopathic Scoliosis
by Lena M. Wollschläger, Sven Nebelung, Christoph Schleich, Anja Müller-Lutz, Karl L. Radke, Miriam Frenken, Matthias Boschheidgen, Max Prost, Gerald Antoch, Markus R. Konieczny and Daniel B. Abrar
Diagnostics 2021, 11(6), 934; https://doi.org/10.3390/diagnostics11060934 - 22 May 2021
Cited by 6 | Viewed by 3317
Abstract
Lumbar intervertebral disc (IVD) degeneration is characterized by structural and compositional changes. This study aimed to assess the glycosaminoglycan (GAG) content of IVDs of patients with adolescent idiopathic scoliosis (AIS) and healthy controls using GAG chemical exchange saturation transfer (gagCEST) imaging. Ten AIS [...] Read more.
Lumbar intervertebral disc (IVD) degeneration is characterized by structural and compositional changes. This study aimed to assess the glycosaminoglycan (GAG) content of IVDs of patients with adolescent idiopathic scoliosis (AIS) and healthy controls using GAG chemical exchange saturation transfer (gagCEST) imaging. Ten AIS patients (mean age 18.3 ± 8.2 years) and 16 healthy controls (mean age 25.5 ± 1.7 years) were included. Clinical standard morphologic MR images (T1w-, T2w-, and STIR-sequences), to rule out further spinal disorders and assess IVD degeneration using the Pfirrmann score, and compositional gagCEST sequences were acquired on a 3T MRI. In AIS patients, the most distal scoliotic curve was determined on whole-spine conventional radiographs and morphological MRI and IVDs were divided as to whether they were affected by scoliotic deformity, i.e., proximal (affected, aIVDs) or distal (unaffected, uaIVDs) to the stable vertebra of the most distal scoliotic curve. Linear mixed models were used to compare mean gagCEST-values. Over all segments, AIS-patients’ IVDs exhibited significantly lower gagCEST-values than the controls: 2.76 [2.32, 3.20]% (AIS), 3.51 [3.16, 3.86]% (Control); p = 0.005. Meanwhile, no significant differences were found for gagCEST values comparing aIVDs with uaIVDs. In conclusion, as a powerful diagnostic adjunct, gagCEST imaging may be prospectively applied to detect early compositional degenerative changes in patients suffering from AIS. Full article
(This article belongs to the Special Issue Advanced MRI Techniques for Musculoskeletal Imaging)
Show Figures

Figure 1

12 pages, 1061 KiB  
Article
A Retrospective Analysis of Characteristic Features of Responders and Impaired Patients to a Single Injection of Pure Platelet-Rich Plasma in Knee Osteoarthritis
by Cécilia Bec, Axelle Rousset, Thibault Brandin, Pauline François, Sitraka Rabarimeriarijaona, Chloé Dumoulin, Gaëlle Heleu, Fanny Grimaud, Julie Veran, Guy Magalon, Françoise Dignat-George, Florence Sabatier, Marie-Laure Louis and Jérémy Magalon
J. Clin. Med. 2021, 10(8), 1748; https://doi.org/10.3390/jcm10081748 - 17 Apr 2021
Cited by 12 | Viewed by 3148
Abstract
(1) Background: The emergence of injectable “biologic” medication creates a new approach to treat osteoarthritis (OA). Among them, the use of intra-articular injection of PRP became widespread despite the absence of consensus regarding its optimal composition. The aim of this study was to [...] Read more.
(1) Background: The emergence of injectable “biologic” medication creates a new approach to treat osteoarthritis (OA). Among them, the use of intra-articular injection of PRP became widespread despite the absence of consensus regarding its optimal composition. The aim of this study was to retrospectively correlate an extensive biological characterization of injected PRP to the clinical responses of patients presenting knee OA. (2) Methods: This retrospective study included 75 patients with knee OA. Cartilage lesions were assessed using magnetic resonance imaging and the International Cartilage Regeneration Society (ICRS) classification. PRP extensive biological characterization was performed and patients’ subjective symptoms were recorded before injection and 3 and 6 months after injection using the Knee injury and Osteoarthritis Outcome Score (KOOS). Responders were defined by an improvement of 10 points on KOOS. (3) Results: At 6 months, 63.0% of the patients were responders. Impairment was characterized by a significantly higher proportion of patients with three compartments altered at baseline MRI and receiving a significantly higher dose of platelets compared to responders. (4) Conclusions: Single injection of pure PRP resulted in significant clinical improvement in the management of knee OA. Both baseline MRI and PRP biological features may be predictive factors of the clinical response, highlighting that a better understanding of action mechanism of PRP is still required. Full article
Show Figures

Graphical abstract

26 pages, 8572 KiB  
Article
PHB/CHIT Scaffold as a Promising Biopolymer in the Treatment of Osteochondral Defects—An Experimental Animal Study
by Eva Petrovova, Marek Tomco, Katarina Holovska, Jan Danko, Lenka Kresakova, Katarina Vdoviakova, Veronika Simaiova, Filip Kolvek, Petra Hornakova, Teodor Toth, Jozef Zivcak, Peter Gal, David Sedmera, Lenka Luptakova and Lubomir Medvecky
Polymers 2021, 13(8), 1232; https://doi.org/10.3390/polym13081232 - 11 Apr 2021
Cited by 19 | Viewed by 4279
Abstract
Biopolymer composites allow the creation of an optimal environment for the regeneration of chondral and osteochondral defects of articular cartilage, where natural regeneration potential is limited. In this experimental study, we used the sheep animal model for the creation of knee cartilage defects. [...] Read more.
Biopolymer composites allow the creation of an optimal environment for the regeneration of chondral and osteochondral defects of articular cartilage, where natural regeneration potential is limited. In this experimental study, we used the sheep animal model for the creation of knee cartilage defects. In the medial part of the trochlea and on the medial condyle of the femur, we created artificial defects (6 × 3 mm2) with microfractures. In four experimental sheep, both defects were subsequently filled with the porous acellular polyhydroxybutyrate/chitosan (PHB/CHIT)-based implant. Two sheep had untreated defects. We evaluated the quality of the newly formed tissue in the femoral trochlea defect site using imaging (X-ray, Computer Tomography (CT), Magnetic Resonance Imaging (MRI)), macroscopic, and histological methods. Macroscopically, the surface of the treated regenerate corresponded to the niveau of the surrounding cartilage. X-ray examination 6 months after the implantation confirmed the restoration of the contour in the subchondral calcified layer and the advanced rate of bone tissue integration. The CT scan revealed a low regenerative potential in the bone zone of the defect compared to the cartilage zone. The percentage change in cartilage density at the defect site was not significantly different to the reference area (0.06–6.4%). MRI examination revealed that the healing osteochondral defect was comparable to the intact cartilage signal on the surface of the defect. Hyaline-like cartilage was observed in most of the treated animals, except for one, where the defect was repaired with fibrocartilage. Thus, the acellular, chitosan-based biomaterial is a promising biopolymer composite for the treatment of chondral and osteochondral defects of traumatic character. It has potential for further clinical testing in the orthopedic field, primarily with the combination of supporting factors. Full article
(This article belongs to the Special Issue Chitosan and Chitosan Derivatives in Biomedical Applications)
Show Figures

Figure 1

13 pages, 2550 KiB  
Article
Longitudinal Femoral Cartilage T2 Relaxation Time and Thickness Changes with Fast Sequential Radiographic Progression of Medial Knee Osteoarthritis—Data from the Osteoarthritis Initiative (OAI)
by Shannon N. Edd, Patrick Omoumi, Brigitte M. Jolles and Julien Favre
J. Clin. Med. 2021, 10(6), 1294; https://doi.org/10.3390/jcm10061294 - 21 Mar 2021
Cited by 10 | Viewed by 2586
Abstract
This study tested for longitudinal changes in femoral cartilage T2 relaxation time and thickness in fast-progressing medial femorotibial osteoarthritis (OA). From the Osteoarthritis Initiative (OAI) database, nineteen knees fulfilled the inclusion criteria, which included medial femorotibial OA and sequential progression from Kellgren–Lawrence grade [...] Read more.
This study tested for longitudinal changes in femoral cartilage T2 relaxation time and thickness in fast-progressing medial femorotibial osteoarthritis (OA). From the Osteoarthritis Initiative (OAI) database, nineteen knees fulfilled the inclusion criteria, which included medial femorotibial OA and sequential progression from Kellgren–Lawrence grade (KL) 1 to KL2 to KL3 within five years. Median T2 value and mean thickness were calculated for six condylar volumes of interest (VOIs; medial/lateral anterior, central, posterior) and six sub-VOIs (medial/lateral anterior external, central, internal). T2 value and thickness changes between severity timepoints were tested using repeated statistics. T2 values increased between KL1 and KL2 and between KL1 and KL3 in the medial compartment (p ≤ 0.02), whereas both increases and decreases were observed between the same timepoints in the lateral compartment (p ≤ 0.02). Cartilage thickness decreased in VOI/subVOIs of the medial compartment from KL1 to KL2 and KL3 (p ≤ 0.014). Cartilage T2 value and thickness changes varied spatially over the femoral condyles. While all T2 changes occurred in the early radiographic stages of OA, thickness changes occurred primarily in the later stages. These data therefore support the use of T2 relaxation time analyses in methods of detecting disease-related change during early OA, a valuable period for therapeutic interventions. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

10 pages, 626 KiB  
Article
DGEMRIC in the Assessment of Pre-Morphological Cartilage Degeneration in Rheumatic Disease: Rheumatoid Arthritis vs. Psoriatic Arthritis
by Daniel B. Abrar, Christoph Schleich, Miriam Frenken, Stefan Vordenbäumen, Jutta Richter, Matthias Schneider, Benedikt Ostendorf, Sven Nebelung and Philipp Sewerin
Diagnostics 2021, 11(2), 147; https://doi.org/10.3390/diagnostics11020147 - 20 Jan 2021
Cited by 9 | Viewed by 2764
Abstract
Background: Even though cartilage loss is a known feature of psoriatic (PsA) and rheumatoid arthritis (RA), research is sparse on its role in the pathogenesis of PsA, its potential use for disease monitoring and for differentiation from RA. We therefore assessed the use [...] Read more.
Background: Even though cartilage loss is a known feature of psoriatic (PsA) and rheumatoid arthritis (RA), research is sparse on its role in the pathogenesis of PsA, its potential use for disease monitoring and for differentiation from RA. We therefore assessed the use of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) to evaluate biochemical cartilage changes in metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints in PsA patients and compared these to RA patients. Materials and Methods: A total of 17 patients with active PsA and 20 patients with active RA were evaluated by high-resolution 3 Tesla dGEMRIC using a dedicated 16-channel hand coil. Images were analyzed by two independent raters for dGEMRIC indices and joint space width (JSW) at MCP and PIP joint levels. Results: No significant differences of dGEMRIC values could be found between both study populations (PsA 472.25 ms, RA 461.11 ms; p = 0.763). In all RA and most PsA patients, PIP joints showed significantly lower dGEMRIC indices than MCP joints (RA: D2: p = 0.009, D3: p = 0.008, D4: p = 0.002, D5: p = 0.002; PsA: D3: p = 0.001, D4: p = 0.004). Most joint spaces had similar widths in both disease entities and no significant differences were found. Conclusions: As evaluated by dGEMRIC, the molecular composition of the MCP and PIP joint cartilage of PsA patients is similar to that of RA patients, demonstrating the scientific and clinical feasibility of compositional magnetic resonance (MR) imaging in these disease entities. Patterns and severity of compositional cartilage degradation of the finger joints may therefore be assessed beyond mere morphology in PsA and RA patients. Full article
(This article belongs to the Special Issue Advanced MRI Techniques for Musculoskeletal Imaging)
Show Figures

Figure 1

Back to TopTop