Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = composite copolymer beads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9645 KiB  
Article
Fabrication of Bio-Composite of Piezoelectric/Myrrh Nanofiber Scaffolds for Wound Healing via Portable Gyrospun
by Enfal Eser Alenezi, Amalina Amir, Hussain Ali Alenezi and Timucin Ugurlu
Pharmaceutics 2025, 17(6), 717; https://doi.org/10.3390/pharmaceutics17060717 - 29 May 2025
Viewed by 628
Abstract
Background/Objectives: Polymeric monoaxial nanofibers are gaining prominence due to their numerous applications, particularly in functional scenarios such as wound management. The study successfully developed and built a special-purpose vessel and device for fabricating polymeric nanofibers. Fabrication of composite scaffolds from piezoelectric poly(vinylidenefluoride-trifluoroethylene) [...] Read more.
Background/Objectives: Polymeric monoaxial nanofibers are gaining prominence due to their numerous applications, particularly in functional scenarios such as wound management. The study successfully developed and built a special-purpose vessel and device for fabricating polymeric nanofibers. Fabrication of composite scaffolds from piezoelectric poly(vinylidenefluoride-trifluoroethylene) copolymer (PVDF-TrFE) nanofibers encapsulated with myrrh extract was investigated. Methods: The gyrospun nanofibers were characterized using SEM, EDX, FTIR, XRD, and TGA to assess the properties of the composite materials. The study also investigated the release profile of myrrh extract from the nanofibers, demonstrating its potential for sustained drug delivery. The composite’s antimicrobial properties were evaluated using the disc diffusion method against various pathogenic microbes, showcasing their effectiveness. Results: It was found that an 18% (w/v) PVDF-TrFE concentration produces the best fiber mats compared to 20% and 25%, resulting in an average fiber diameter of 411 nm. Myrrh extract was added in varying amounts (10%, 15%, and 20%), with the best average fiber diameter identified at 10%, measuring 436 nm. The results indicated that the composite nanofibers were uniform, bead-free, and aligned without myrrh. The study observed a cumulative release of 79.66% myrrh over 72 h. The release profile showed an initial burst release of 46.85% within the first six hours, followed by a sustained release phase. Encapsulation efficiency was 89.8%, with a drug loading efficiency of 30%. Antibacterial activity peaked at 20% myrrh extract. S. mutans was the most sensitive pathogen to myrrh extract. Conclusions: Due to the piezoelectric effect of PVDF-TrFE and the significant antibacterial activity of myrrh, the prepared biohybrid nanofibers will open new avenues toward tissue engineering and wound healing applications. Full article
(This article belongs to the Special Issue Biopolymer Materials for Wound Healing, 3rd Edition)
Show Figures

Graphical abstract

11 pages, 3464 KiB  
Article
Deciphering the Coarse-Grained Model of Ionic Liquid by Tunning the Interaction Level and Bead Types of Martini 3 Force Field
by Sukanya Konar, Arash Elahi and Santanu Chaudhuri
Physchem 2024, 4(4), 420-430; https://doi.org/10.3390/physchem4040029 - 23 Oct 2024
Viewed by 1640
Abstract
In recent years, ionic liquids (ILs) have served as potential solvents to dissolve organic, inorganic, and polymer materials. A copolymer (for example, Pluronic) can undergo self-organization by forming a micelle-like structure in pure IL medium, and its assembly depends upon the composition of [...] Read more.
In recent years, ionic liquids (ILs) have served as potential solvents to dissolve organic, inorganic, and polymer materials. A copolymer (for example, Pluronic) can undergo self-organization by forming a micelle-like structure in pure IL medium, and its assembly depends upon the composition of IL. To evaluate the role of ILs, accurate coarse-grained (CG) modeling of IL is needed. Here, we modeled 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) ionic liquid (IL) using a CG framework. We optimized CG parameters for the [DCA] anion by tuning the non-bonded parameters and selecting different kinds of beads. The molecular density (ρ) and radial distribution function (RDF) of our CG model reveal a good agreement with the all-atom (AA) simulation data. We further validated our model by choosing another imidazolium-based cation. Our modified CG model for the anion shows compatibility with the cation and the obtained density matches well with the experimental data. The strategies for developing the CG model will provide a guideline for accurate modeling of new types of ILs. Our CG model will be useful in studying the micellization of non-ionic Pluronic in the [EMIM][DCA] IL medium. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

19 pages, 4868 KiB  
Article
Chitosan/Poly(maleic acid-alt-vinyl acetate) Hydrogel Beads for the Removal of Cu2+ from Aqueous Solution
by Irina Popescu, Irina Mihaela Pelin, Dana Mihaela Suflet, Magdalena Cristina Stanciu and Marieta Constantin
Gels 2024, 10(8), 500; https://doi.org/10.3390/gels10080500 - 28 Jul 2024
Cited by 1 | Viewed by 1419
Abstract
Covalent cross-linked hydrogels based on chitosan and poly(maleic acid-alt-vinyl acetate) were prepared as spherical beads. The structural modifications of the beads during the preparation steps (dropping in liquid nitrogen and lyophilization, thermal treatment, washing with water, and treatment with NaOH) were [...] Read more.
Covalent cross-linked hydrogels based on chitosan and poly(maleic acid-alt-vinyl acetate) were prepared as spherical beads. The structural modifications of the beads during the preparation steps (dropping in liquid nitrogen and lyophilization, thermal treatment, washing with water, and treatment with NaOH) were monitored by FT-IR spectroscopy. The hydrogel beads have a porous inner structure, as shown by SEM microscopy; moreover, they are stable in acidic and basic pH due to the covalent crosslinking. The swelling degree is strongly influenced by the pH since the beads possess ionizable amine and carboxylic groups. The binding capacity for Cu2+ ions was examined in batch mode as a function of sorbent composition, pH, contact time, and the initial concentration of Cu2+. The kinetic data were well-fitted with the pseudo-second-order kinetic, while the sorption equilibrium data were better fitted with Langmuir and Sips isotherms. The maximum equilibrium sorption capacity was higher for the beads obtained with a 3:1 molar ratio between the maleic copolymer and chitosan (142.4 mg Cu2+ g−1), compared with the beads obtained using a 1:1 molar ratio (103.7 mg Cu2+ g−1). The beads show a high degree of reusability since no notable decrease in the sorption capacity was observed after five consecutive sorption/desorption cycles. Full article
(This article belongs to the Special Issue High-Performance Hydrogel)
Show Figures

Figure 1

16 pages, 2741 KiB  
Article
Composite Copolymer Beads Incorporating Red Mud for Water Amendment by Adsorption—Oxidation Processes
by Teodor Sandu, Elena Alina Olaru, Raul-Augustin Mitran, Andreea Miron, Sorin-Viorel Dolana, Anamaria Zaharia, Ana-Mihaela Gavrilă, Marinela-Victoria Dumitru, Anita-Laura Chiriac, Andrei Sârbu and Tanța-Verona Iordache
Appl. Sci. 2024, 14(14), 6386; https://doi.org/10.3390/app14146386 - 22 Jul 2024
Viewed by 1286
Abstract
We face significant environmental pollution problems due to various industries, such as the aluminum industry, which generates large amounts of red mud (RM) waste, or agriculture, in which case the use of pesticides creates huge water pollution problems. In this context, the present [...] Read more.
We face significant environmental pollution problems due to various industries, such as the aluminum industry, which generates large amounts of red mud (RM) waste, or agriculture, in which case the use of pesticides creates huge water pollution problems. In this context, the present study offers a better perspective to originally solve both environmental issues. Thus, the main target of the study referred to using RM waste as a filler for preparing composite copolymer beads. Thereafter, this can achieve significant removal of water pollutants due to their adsorption/oxidation characteristics. As evidenced by the changes in chemical structure and composition, thermal stability, morphology, and porosity, RM was homogenously incorporated in poly(acrylonitrile-co-acrylic acid) beads prepared by wet phase inversion. The final assessment for the removal of pesticides by adsorption and oxidation processes was proven successful. In this regard, 2,4-dichlorophenoxyacetic acid was chosen as a model pollutant, for which an adsorption capacity of 16.08 mg/g composite beads was achieved. Full article
(This article belongs to the Special Issue Pollution Control Chemistry II)
Show Figures

Figure 1

20 pages, 6816 KiB  
Article
Eco-Friendly g-C3N4/Carboxymethyl Cellulose/Alginate Composite Hydrogels for Simultaneous Photocatalytic Degradation of Organic Dye Pollutants
by Ksenija Milošević, Davor Lončarević, Melina Kalagasidis Krušić, Milica Hadnađev-Kostić and Jasmina Dostanić
Int. J. Mol. Sci. 2024, 25(14), 7896; https://doi.org/10.3390/ijms25147896 - 19 Jul 2024
Cited by 5 | Viewed by 2238
Abstract
The presented study was focused on the simple, eco-friendly synthesis of composite hydrogels of crosslinked carboxymethyl cellulose (CMC)/alginate (SA) with encapsulated g-C3N4 nanoparticles. The structural, textural, morphological, optical, and mechanical properties were determined using different methods. The encapsulation of g-C [...] Read more.
The presented study was focused on the simple, eco-friendly synthesis of composite hydrogels of crosslinked carboxymethyl cellulose (CMC)/alginate (SA) with encapsulated g-C3N4 nanoparticles. The structural, textural, morphological, optical, and mechanical properties were determined using different methods. The encapsulation of g-C3N4 into CMC/SA copolymer resulted in the formation of composite hydrogels with a coherent structure, enhanced porosity, excellent photostability, and good adhesion. The ability of composite hydrogels to eliminate structurally different dyes with the same or opposite charge properties (cationic Methylene Blue and anionic Orange G and Remazol Brilliant Blue R) in both single- and binary-dye systems was examined through adsorption and photocatalytic reactions. The interactions between the dyes and g-C3N4 and the negatively charged CMC/SA copolymers had a notable influence on both the adsorption capacity and photodegradation efficiency of the prepared composites. Scavenger studies and leaching tests were conducted to gain insights into the primary reactive species and to assess the stability and long-term performance of the g-C3N4/CMC/SA beads. The commendable photocatalytic activity and excellent recyclability, coupled with the elimination of costly catalyst separation requirements, render the g-C3N4/CMC/SA composite hydrogels cost-effective and environmentally friendly materials, and strongly support their selection for tackling environmental pollution issues. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis: An Innovation in Catalysis)
Show Figures

Figure 1

18 pages, 6510 KiB  
Article
Effect of Fe3O4 Nanoparticles Modified by Citric and Oleic Acids on the Physicochemical and Magnetic Properties of Hybrid Electrospun P(VDF-TrFE) Scaffolds
by Vladimir Botvin, Anastasia Fetisova, Yulia Mukhortova, Dmitry Wagner, Sergey Kazantsev, Maria Surmeneva, Andrei Kholkin and Roman Surmenev
Polymers 2023, 15(14), 3135; https://doi.org/10.3390/polym15143135 - 24 Jul 2023
Cited by 17 | Viewed by 3438
Abstract
This study considers a fabrication of magnetoactive scaffolds based on a copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)) and 5, 10, and 15 wt.% of magnetite (Fe3O4) nanoparticles modified with citric (CA) and oleic (OA) acids by solution electrospinning. [...] Read more.
This study considers a fabrication of magnetoactive scaffolds based on a copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)) and 5, 10, and 15 wt.% of magnetite (Fe3O4) nanoparticles modified with citric (CA) and oleic (OA) acids by solution electrospinning. The synthesized Fe3O4-CA and Fe3O4-OA nanoparticles are similar in particle size and phase composition, but differ in zeta potential values and magnetic properties. Pure P(VDF-TrFE) scaffolds as well as composites with Fe3O4-CA and Fe3O4-OA nanoparticles demonstrate beads-free 1 μm fibers. According to scanning electron (SEM) and transmission electron (TEM) microscopy, fabricated P(VDF-TrFE) scaffolds filled with CA-modified Fe3O4 nanoparticles have a more homogeneous distribution of magnetic filler due to both the high stabilization ability of CA molecules and the affinity of Fe3O4-CA nanoparticles to the solvent used and P(VDF-TrFE) functional groups. The phase composition of pure and composite scaffolds includes a predominant piezoelectric β-phase, and a γ-phase, to a lesser extent. When adding Fe3O4-CA and Fe3O4-OA nanoparticles, there was no significant decrease in the degree of crystallinity of the P(VDF-TrFE), which, on the contrary, increased up to 76% in the case of composite scaffolds loaded with 15 wt.% of the magnetic fillers. Magnetic properties, mainly saturation magnetization (Ms), are in a good agreement with the content of Fe3O4 nanoparticles and show, among the known magnetoactive PVDF or P(VDF-TrFE) scaffolds, the highest Ms value, equal to 10.0 emu/g in the case of P(VDF-TrFE) composite with 15 wt.% of Fe3O4-CA nanoparticles. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds)
Show Figures

Figure 1

12 pages, 3645 KiB  
Article
Electrostrictive and Structural Properties of Poly(Vinylidene Fluoride-Hexafluoropropylene) Composite Nanofibers Filled with Polyaniline (Emeraldine Base)
by Nikruesong Tohluebaji, Chatchai Putson, Nantakan Muensit and Jureeporn Yuennan
Polymers 2021, 13(19), 3250; https://doi.org/10.3390/polym13193250 - 24 Sep 2021
Cited by 5 | Viewed by 2740
Abstract
Previous studies have reported that poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) copolymers can exhibit large electrostrictive strains depending on the filler. This work examines the electrostrictive and structural properties of P(VDF-HFP) nanofibers modified with conductive polymer polyaniline (PANI). The P(VDF-HFP)/PANI composite nanofibers were prepared by an [...] Read more.
Previous studies have reported that poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) copolymers can exhibit large electrostrictive strains depending on the filler. This work examines the electrostrictive and structural properties of P(VDF-HFP) nanofibers modified with conductive polymer polyaniline (PANI). The P(VDF-HFP)/PANI composite nanofibers were prepared by an electrospinning method with different PANI concentrations (0, 0.5, 1, 1.5, 3 and 5 wt.%). The average diameter, water contact angle and element were analyzed by SEM, WCA and EDX, respectively. The crystalline, phase structure and mechanical properties were investigated by XRD, FTIR and DMA, respectively. The dielectric properties and electrostrictive behavior were also studied. The results demonstrated that the composite nanofibers exhibited uniform fibers without any bead formation, and the WCA decreased with increasing amount of PANI. However, a high dielectric constant and electromechanical response were obtained. The electrostrictive coefficient, crystalline, phase structure, dielectric properties and interfacial charge distributions increased in relation to the PANI content. Moreover, this study indicates that P(VDF-HFP)/PANI composite nanofibers may represent a promising route for obtaining electrostrictive composite nanofibers for actuation applications, microelectromechanical systems and sensors based on electrostrictive phenomena. Full article
(This article belongs to the Special Issue Polymeric Nanofibers and Nanotextiles for High-Tech Applications)
Show Figures

Graphical abstract

Back to TopTop