Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = commutative superalgebra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 397 KB  
Article
Hilbert Bundles and Holographic Space–Time Models
by Tom Banks
Astronomy 2025, 4(2), 7; https://doi.org/10.3390/astronomy4020007 - 22 Apr 2025
Viewed by 991
Abstract
We reformulate holographic space–time models in terms of Hilbert bundles over the space of the time-like geodesics in a Lorentzian manifold. This reformulation resolves the issue of the action of non-compact isometry groups on finite-dimensional Hilbert spaces. Following Jacobson, I view the background [...] Read more.
We reformulate holographic space–time models in terms of Hilbert bundles over the space of the time-like geodesics in a Lorentzian manifold. This reformulation resolves the issue of the action of non-compact isometry groups on finite-dimensional Hilbert spaces. Following Jacobson, I view the background geometry as a hydrodynamic flow, whose connection to an underlying quantum system follows from the Bekenstein–Hawking relation between area and entropy, generalized to arbitrary causal diamonds. The time-like geodesics are equivalent to the nested sequences of causal diamonds, and the area of the holoscreen (The holoscreen is the maximal d2 volume (“area”) leaf of a null foliation of the diamond boundary. I use the term area to refer to its volume.) encodes the entropy of a certain density matrix on a finite-dimensional Hilbert space. I review arguments that the modular Hamiltonian of a diamond is a cutoff version of the Virasoro generator L0 of a 1+1-dimensional CFT of a large central charge, living on an interval in the longitudinal coordinate on the diamond boundary. The cutoff is chosen so that the von Neumann entropy is lnD, up to subleading corrections, in the limit of a large-dimension diamond Hilbert space. I also connect those arguments to the derivation of the ’t Hooft commutation relations for horizon fluctuations. I present a tentative connection between the ’t Hooft relations and U(1) currents in the CFTs on the past and future diamond boundaries. The ’t Hooft relations are related to the Schwinger term in the commutator of the vector and axial currents. The paper in can be read as evidence that the near-horizon dynamics for causal diamonds much larger than the Planck scale is equivalent to a topological field theory of the ’t Hooft CR plus small fluctuations in the transverse geometry. Connes’ demonstration that the Riemannian geometry is encoded in the Dirac operator leads one to a completely finite theory of transverse geometry fluctuations, in which the variables are fermionic generators of a superalgebra, which are the expansion coefficients of the sections of the spinor bundle in Dirac eigenfunctions. A finite cutoff on the Dirac spectrum gives rise to the area law for entropy and makes the geometry both “fuzzy” and quantum. Following the analysis of Carlip and Solodukhin, I model the expansion coefficients as two-dimensional fermionic fields. I argue that the local excitations in the interior of a diamond are constrained states where the spinor variables vanish in the regions of small area on the holoscreen. This leads to an argument that the quantum gravity in asymptotically flat space must be exactly supersymmetric. Full article
Show Figures

Figure 1

18 pages, 371 KB  
Article
S-Embedding of Lie Superalgebras and Its Implications for Fuzzy Lie Algebras
by Abdullah Assiry, Sabeur Mansour and Amir Baklouti
Axioms 2024, 13(1), 2; https://doi.org/10.3390/axioms13010002 - 19 Dec 2023
Viewed by 1625
Abstract
This paper performed an investigation into the s-embedding of the Lie superalgebra (S11), a representation of smooth vector fields on a (1,1)-dimensional super-circle. Our primary objective was to establish a precise definition of the s-embedding, effectively [...] Read more.
This paper performed an investigation into the s-embedding of the Lie superalgebra (S11), a representation of smooth vector fields on a (1,1)-dimensional super-circle. Our primary objective was to establish a precise definition of the s-embedding, effectively dissecting the Lie superalgebra into the superalgebra of super-pseudodifferential operators ( SψD) residing on the super-circle S1|1. We also introduce and rigorously define the central charge within the framework of (S11), leveraging the canonical central extension of SψD. Moreover, we expanded the scope of our inquiry to encompass the domain of fuzzy Lie algebras, seeking to elucidate potential connections and parallels between these ostensibly distinct mathematical constructs. Our exploration spanned various facets, including non-commutative structures, representation theory, central extensions, and central charges, as we aimed to bridge the gap between Lie superalgebras and fuzzy Lie algebras. To summarize, this paper is a pioneering work with two pivotal contributions. Initially, a meticulous definition of the s-embedding of the Lie superalgebra (S1|1) is provided, emphasizing the representationof smooth vector fields on the (1,1)-dimensional super-circle, thereby enriching a fundamental comprehension of the topic. Moreover, an investigation of the realm of fuzzy Lie algebras was undertaken, probing associations with conventional Lie superalgebras. Capitalizing on these discoveries, we expound upon the nexus between central extensions and provide a novel deformed representation of the central charge. Full article
8 pages, 238 KB  
Article
3-Lie Superalgebras Induced by Lie Superalgebras
by Viktor Abramov
Axioms 2019, 8(1), 21; https://doi.org/10.3390/axioms8010021 - 6 Feb 2019
Cited by 6 | Viewed by 3156
Abstract
We show that given a Lie superalgebra and an element of its dual space, one can construct the 3-Lie superalgebra. We apply this approach to Lie superalgebra of ( m , n ) -block matrices taking a supertrace of a matrix as the [...] Read more.
We show that given a Lie superalgebra and an element of its dual space, one can construct the 3-Lie superalgebra. We apply this approach to Lie superalgebra of ( m , n ) -block matrices taking a supertrace of a matrix as the element of dual space. Then we also apply this approach to commutative superalgebra and the Lie superalgebra of its derivations to construct 3-Lie superalgebra. The graded Lie brackets are constructed by means of a derivation and involution of commutative superalgebra, and we use them to construct 3-Lie superalgebras. Full article
25 pages, 541 KB  
Communication
Gradings, Braidings, Representations, Paraparticles: Some Open Problems
by Konstantinos Kanakoglou
Axioms 2012, 1(1), 74-98; https://doi.org/10.3390/axioms1010074 - 15 Jun 2012
Cited by 5 | Viewed by 6976
Abstract
A research proposal on the algebraic structure, the representations and the possible applications of paraparticle algebras is structured in three modules: The first part stems from an attempt to classify the inequivalent gradings and braided group structures present in the various parastatistical algebraic [...] Read more.
A research proposal on the algebraic structure, the representations and the possible applications of paraparticle algebras is structured in three modules: The first part stems from an attempt to classify the inequivalent gradings and braided group structures present in the various parastatistical algebraic models. The second part of the proposal aims at refining and utilizing a previously published methodology for the study of the Fock-like representations of the parabosonic algebra, in such a way that it can also be directly applied to the other parastatistics algebras. Finally, in the third part, a couple of Hamiltonians is proposed, suitable for modeling the radiation matter interaction via a parastatistical algebraic model. Full article
(This article belongs to the Special Issue Hopf Algebras, Quantum Groups and Yang-Baxter Equations)
Back to TopTop