S-Embedding of Lie Superalgebras and Its Implications for Fuzzy Lie Algebras
Abstract
:1. Introduction
2. Background
2.1. The Lie Superalgebra of (Contact) Vector Fields on
2.2. Detailed Overview of the Super-Space
2.3. Fuzzy Lie Algebras
- is a fuzzy subspace of V;
- Each nonempty is a subspace of V.
- Note :
- This theorem establishes the equivalence between fuzzy subspaces and conventional subspaces within the context of fuzzy sets.
2.4. The Structure of as a -Module
3. Computations of the Space
4. Deformations, Cohomology, and Integrability of Infinitesimal Deformations
4.1. Deformations
4.2. Integrability of Infinitesimal Deformation
4.2.1. Exploring Integrable Infinitesimal Deformations in Fuzzy Lie Algebras
4.2.2. A Variation of the Central Charge
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pogudin, G.; Razmyslov, Y.P. Prime Lie algebras satisfying the standard Lie identity of degree 5. J. Algebra 2016, 468, 182–192. [Google Scholar] [CrossRef]
- Bahturin, Y. Identical Relations in Lie Algebras; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2021; Volume 68. [Google Scholar]
- Kanel-Belov, A.; Rowen, L.H. Computational Aspects of Polynomial Identities; AK Peters/CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Davies, J.M. Elliptic cohomology is unique up to homotopy. J. Aust. Math. Soc. 2023, 115, 99–118. [Google Scholar] [CrossRef]
- Baklouti, A. Quadratic Hom-Lie triple systems. J. Geom. Phys. 2017, 121, 166–175. [Google Scholar] [CrossRef]
- Baklouti, A.; Benayadi, S. Symplectic Jacobi-Jordan algebras. Linear Multilinear Algebra 2021, 69, 1557–1578. [Google Scholar] [CrossRef]
- Roger, C.; Ovsienko, V. Deforming the Lie algebra of vector fields on S1 inside the Lie algebra of pseudodifferential symbols on S1. arXiv 1998, arXiv:math/9812074. [Google Scholar]
- Ovsienko, V.; Roger, C. Deforming the Lie algebra of vector fields on S1 inside the Lie algebra of pseudodifferential symbols on S1, Differential topology, infinite-dimensional Lie algebras, and applications. Am. Math. Soc. Transl. 1999, 194, 211–226. [Google Scholar]
- Creutzig, T.; Linshaw, A. The super W(1∞) algebra with integral central charge. Trans. Am. Math. Soc. 2015, 367, 5521–5551. [Google Scholar] [CrossRef]
- Cheng, S.J.; Wang, W. Lie subalgebras of differential operators on the super circle. Publ. Res. Inst. Math. Sci. 2003, 39, 545–600. [Google Scholar] [CrossRef]
- García, J.I.; Liberati, J.I. Quasifinite Representations of Classical Subalgebras of the Lie Superalgebra of Quantum Pseudodifferential Operators. Int. Sch. Res. Not. 2013, 2013, 672872. [Google Scholar] [CrossRef]
- Yehia, S.E.B. The adjoint representation of fuzzy Lie algebras. Fuzzy Sets Syst. 2001, 119, 409–417. [Google Scholar] [CrossRef]
- Assiry, A.; Baklouti, A. Exploring Roughness in Left Almost Semigroups and Its Connections to Fuzzy Lie Algebras. Symmetry 2023, 15, 1717. [Google Scholar] [CrossRef]
- Baklouti, A. Multiple-Attribute Decision Making Based on the Probabilistic Dominance Relationship with Fuzzy Algebras. Symmetry 2023, 15, 1188. [Google Scholar] [CrossRef]
- Radul, A.O. Non-trivial central extensions of Lie algebras of differential operators in two and higher dimensions. Phys. Lett. B 1991, 265, 86–91. [Google Scholar] [CrossRef]
- Agrebaoui, B.; Ben Fraj, N. On the cohomology of the Lie superalgebra of contact vector fields on S1|1. Belletin Soc. R. Sci. Liege 2004, 72, 365–375. [Google Scholar] [CrossRef]
- Manin, Y.I.; Radul, A.O. A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy. Commun. Math. Phys. 1985, 98, 65–77. [Google Scholar] [CrossRef]
- Ali, A.; Alali, A.S.; Zishan, A. Applications of Fuzzy Semiprimary Ideals under Group Action. Axioms 2023, 12, 606. [Google Scholar] [CrossRef]
- Altassan, A.; Mateen, M.H.; Pamucar, D. On Fundamental Theorems of Fuzzy Isomorphism of Fuzzy Subrings over a Certain Algebraic Product. Symmetry 2021, 13, 998. [Google Scholar] [CrossRef]
- Shaqaqha, S. Fuzzy Hom–Lie Ideals of Hom–Lie Algebras. Axioms 2023, 12, 630. [Google Scholar] [CrossRef]
- Agrebaoui, B.; Ben Fraj, N.; Omri, S. On the cohomology of the Lie superalgebra of contact vector fields on S1|2. J. Nonlinear Math. Phys. 2006, 13, 523–534. [Google Scholar] [CrossRef]
- Fuks, D.B. Cohomology of Infinite-Dimensional Lie Algebras; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Poletaeva, E. The analogs of Riemann and Penrose tensors on supermanifolds. arXiv 2005, arXiv:math/0510165. [Google Scholar]
- Nijenhuis, A.; Richardson, R.W., Jr. Deformations of homomorphisms of Lie groups and Lie algebras. Bull. Am. Math. Soc. 1967, 73, 175–179. [Google Scholar] [CrossRef]
- Agrebaoui, B.; Ammar, F.; Lecomte, P.; Ovsienko, V. Multi-parameter deformations of the module of symbols of differential operators. Int. Math. Res. Not. 2002, 2002, 847–869. [Google Scholar] [CrossRef]
- Fialowski, A.; Fuchs, D. Construction of miniversal deformations of Lie algebras. J. Funct. Anal. 1999, 161, 76–110. [Google Scholar] [CrossRef]
- Fraj, N.B.; Omri, S. Deforming the Lie superalgebra of contact vector fields on S1|1 inside the Lie superalgebra of superpseudodifferential operators on S1|1. J. Nonlinear Math. Phys. 2006, 13, 19–33. [Google Scholar] [CrossRef]
- Grozman, P.; Leites, D.; Shchepochkina, I. Lie superalgebras of string theories. arXiv 1997, arXiv:hep-th/9702120. [Google Scholar]
- Radul, A.O. Superstring schwartz derivative and the bott cocycle. In Integrable and Superintegrable Systems; World Scientic: Singapore, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assiry, A.; Mansour, S.; Baklouti, A. S-Embedding of Lie Superalgebras and Its Implications for Fuzzy Lie Algebras. Axioms 2024, 13, 2. https://doi.org/10.3390/axioms13010002
Assiry A, Mansour S, Baklouti A. S-Embedding of Lie Superalgebras and Its Implications for Fuzzy Lie Algebras. Axioms. 2024; 13(1):2. https://doi.org/10.3390/axioms13010002
Chicago/Turabian StyleAssiry, Abdullah, Sabeur Mansour, and Amir Baklouti. 2024. "S-Embedding of Lie Superalgebras and Its Implications for Fuzzy Lie Algebras" Axioms 13, no. 1: 2. https://doi.org/10.3390/axioms13010002
APA StyleAssiry, A., Mansour, S., & Baklouti, A. (2024). S-Embedding of Lie Superalgebras and Its Implications for Fuzzy Lie Algebras. Axioms, 13(1), 2. https://doi.org/10.3390/axioms13010002