Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = combustion-derived particulate matter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1217 KiB  
Article
Molecular Characterization of Organic Aerosol in Summer Suburban Shanghai Under High Humidity
by Xiancheng Tang, Junfang Mao, Dongmei Cai, Zhiwei Zhang, Haixin Nong, Ling Li and Jianmin Chen
Atmosphere 2025, 16(6), 659; https://doi.org/10.3390/atmos16060659 - 30 May 2025
Viewed by 372
Abstract
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal [...] Read more.
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal variation analysis reveals the influence of relative humidity (RH) on secondary organic aerosol (SOA) components. Organosulfates (OSs), particularly nitrooxy-OSs, exhibit a positive correlation with increasing humidity rather than atmospheric oxidants in this high-humidity site. This suggests that high RH can promote the formation of OSs, possibly through enhancing particle surface area and volume, and creating a favorable environment for aqueous-phase or heterogeneous reactions in the particle phase. A considerable proportion of CHOS compounds may be derived from anthropogenic aliphatic hydrocarbon derivatives. These compounds exhibit slightly elevated daytime concentrations due to increased emissions of long-chain aliphatics from sources such as diesel combustion, as well as photochemically enhanced oxidation to OSs. In contrast, CHONS compounds increased at night, driven by high-humidity liquid-phase oxidation. Terpenoid derivatives accounted for 13.4% of MSOC and contributed over 40% to nighttime CHONS. These findings highlight humidity’s important role in driving daytime and nighttime processing of anthropogenic and biogenic precursors to form SOA, even under low SO2 and NOx conditions. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

24 pages, 1664 KiB  
Review
Microextraction and Eco-Friendly Techniques Applied to Solid Matrices Followed by Chromatographic Analysis
by Attilio Naccarato, Rosangela Elliani and Antonio Tagarelli
Separations 2025, 12(5), 124; https://doi.org/10.3390/separations12050124 - 14 May 2025
Cited by 2 | Viewed by 708
Abstract
In this review, a 5-year overview on environmentally friendly approaches for the extraction of the most relevant organic pollutants in soil, sediment, particulate matter, and sewage sludge coupled with chromatographic analysis is reported. Organic contaminants encompass various compounds derived from personal care products, [...] Read more.
In this review, a 5-year overview on environmentally friendly approaches for the extraction of the most relevant organic pollutants in soil, sediment, particulate matter, and sewage sludge coupled with chromatographic analysis is reported. Organic contaminants encompass various compounds derived from personal care products, industrial chemicals, microplastics, organic matter combustion, agricultural practices, and plasticizer material. The principles of green analytical chemistry (GAC) and green sample preparation (GSP) serve as a guideline for the development of more environmentally sustainable analytical protocols. This study focuses attention on microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), matrix solid-phase dispersion (MSPD), and microextraction techniques, such as solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), spray-assisted droplet formation-based liquid-phase microextraction (SADF-LPME), and dispersive liquid–liquid extraction (DLLME). These approaches represent the most relevant eco-friendly sample preparation for the advanced extraction of target analytes from environmental solid samples. Full article
Show Figures

Figure 1

16 pages, 8422 KiB  
Article
Numerical Calculation Optimization for Particulate Matter Trapping and Oxidation of Catalytic Diesel Particulate Filter
by Maki Nakamura, Koji Yokota and Masakuni Ozawa
Appl. Sci. 2025, 15(5), 2356; https://doi.org/10.3390/app15052356 - 22 Feb 2025
Cited by 1 | Viewed by 956
Abstract
In recent years, the transition to electric vehicles has accelerated significantly. However, this shift does not imply the complete elimination of diesel engine vehicles, particularly in commercial and cargo transport, where diesel engines remain essential due to their high thermal efficiency and torque. [...] Read more.
In recent years, the transition to electric vehicles has accelerated significantly. However, this shift does not imply the complete elimination of diesel engine vehicles, particularly in commercial and cargo transport, where diesel engines remain essential due to their high thermal efficiency and torque. Despite their advantages, diesel engines produce particulate matter (PM) in their exhaust, which poses environmental and health risks. To mitigate PM emissions, diesel particulate filters (DPFs) are integrated into exhaust systems. However, as PM accumulates in the DPF, pressure drops occur, increasing the load on the engine. Therefore, periodic removal of PM through oxidation, known as regeneration, is required. Optimizing the PM combustion temperature improves fuel efficiency, but since diesel engine exhaust temperatures typically range from 100 to 500 °C, catalysts that facilitate PM oxidation at lower temperatures are necessary. This study focuses on PM oxidation catalysts designed for low-temperature diesel exhaust conditions. One of the key challenges in this area is the difficulty in directly observing PM trapping and oxidation behavior within a catalyzed DPF. Additionally, changing the catalyst during experiments is not straightforward. To address these challenges, we have developed a numerical model that simulates the entire process—from PM deposition to oxidation—inside a DPF. This model allows for easy modification of catalyst properties, providing a flexible framework for analyzing PM oxidation behavior under various conditions. In this study, numerical simulations were conducted to analyze the PM deposition and oxidation processes within the DPF. The results were derived from a simplified model developed specifically for this research. The proposed calculation method allows for the qualitative assessment of DPF performance when catalysts are altered, contributing to the optimization of DPF design. Full article
(This article belongs to the Special Issue Novel Advances of Combustion and Its Emissions)
Show Figures

Figure 1

20 pages, 14154 KiB  
Article
Differential Cytotoxicity and Inflammatory Responses to Particulate Matter Components in Airway Structural Cells
by Nilofar Faruqui, Sofie Orell, Camilla Dondi, Zaira Leni, Daniel M. Kalbermatter, Lina Gefors, Jenny Rissler, Konstantina Vasilatou, Ian S. Mudway, Monica Kåredal, Michael Shaw and Anna-Karin Larsson-Callerfelt
Int. J. Mol. Sci. 2025, 26(2), 830; https://doi.org/10.3390/ijms26020830 - 20 Jan 2025
Cited by 1 | Viewed by 3619
Abstract
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different [...] Read more.
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition. The objective of this study was to assess the relative hazardous effects of carbonaceous particles (soot), ammonium nitrate, ammonium sulfate, and copper oxide (CuO), which are standard components of ambient air, reflecting contributions from primary combustion, secondary inorganic constituents, and non-exhaust emissions (NEE) from vehicular traffic. Human epithelial cells representing bronchial (BEAS-2B) and alveolar locations (H441 and A549) in the airways, human lung fibroblasts (HFL-1), and rat precision-cut lung slices (PCLS) were exposed in submerged cultures to different concentrations of particles for 5–72 h. Following exposure, cell viability, metabolic activity, reactive oxygen species (ROS) formation, and inflammatory responses were analyzed. CuO and, to a lesser extent, soot reduced cell viability in a dose-dependent manner, increased ROS formation, and induced inflammatory responses. Ammonium nitrate and ammonium sulfate did not elicit any significant cytotoxic responses but induced immunomodulatory alterations at very high concentrations. Our findings demonstrate that secondary inorganic components of PM have a lower hazard cytotoxicity compared with combustion-derived and indicative NEE components, and alveolar epithelial cells are more sensitive to PM exposure. This information should help to inform which sources of PM to target and feed into improved, targeted air quality guidelines. Full article
(This article belongs to the Special Issue Toxicity Mechanism of Emerging Pollutants)
Show Figures

Figure 1

19 pages, 6560 KiB  
Article
Analyzing Engine Performance and Combustor Performance to Assess Sustainable Aviation Fuel Blends
by Ziyu Liu and Xiaoyi Yang
Aerospace 2024, 11(12), 1053; https://doi.org/10.3390/aerospace11121053 - 23 Dec 2024
Cited by 2 | Viewed by 1471
Abstract
FT blends derived from biomass have been confirmed to benefit reductions in GHG and particulate matter (PM). An improvement in combustibility is predicted to reduce fuel consumption and lead to further emission reduction. Various FT fuel blends (7%, 10%, 23%, and 50%) were [...] Read more.
FT blends derived from biomass have been confirmed to benefit reductions in GHG and particulate matter (PM). An improvement in combustibility is predicted to reduce fuel consumption and lead to further emission reduction. Various FT fuel blends (7%, 10%, 23%, and 50%) were assessed in terms of their potential for energy savings and emission reduction in a ZF850 jet engine. The engine performance, including the thrust, fuel consumption, emissions, exhaust gas temperature (EGT), acceleration, and deceleration, was investigated in terms of the whole thrust output, while combustor performance parameters, including EIUHC, EIPM2.5, EICO, EINox, and combustion efficiency, were also discussed. The benefit gained in engine performance was nonlinearly related to the blend ratio, which indicated that the available FT blends required appropriate fuel properties coupled with the engine design. According to the superior improvements derived from the 7% FT fuel blend and 23% FT fuel blend, an appropriate lower C/H ratio and higher combustion efficiency with low PM emissions led to a reduction in fuel consumption. Through global sensitivity analysis, changes in the thrust-specific fuel consumption (TSFC) and the thrust and combustion efficiency with various fuel properties were captured. These can be classified as engine-influenced and fuel-influenced (EIFI) parameters. EICO and EINOx are mainly dependent on the combustor and engine design and can be categorized as engine-influenced and fuel-less-influenced parameters (EIFLI), while EIUHC and EIPM2.5 can be categorized as EIFI parameters. The results of this work could extend our understanding of the impact of FT blends on engine performance and GHG reduction. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 5213 KiB  
Article
Acceleration of Modeling Capability for GDI Spray by Machine-Learning Algorithms
by Yassine El Marnissi, Kyungwon Lee and Joonsik Hwang
Fluids 2024, 9(11), 267; https://doi.org/10.3390/fluids9110267 - 18 Nov 2024
Viewed by 1210
Abstract
Cold start causes a high amount of unburned hydrocarbon and particulate matter emissions in gasoline direct injection (GDI) engines. Therefore, it is necessary to understand the dynamics of spray during a cold start and develop a predictive model to form a better air-fuel [...] Read more.
Cold start causes a high amount of unburned hydrocarbon and particulate matter emissions in gasoline direct injection (GDI) engines. Therefore, it is necessary to understand the dynamics of spray during a cold start and develop a predictive model to form a better air-fuel mixture in the combustion chamber. In this study, an Artificial Neural Network (ANN) was designed to predict quantitative 3D liquid volume fraction, liquid penetration, and liquid width under different operating conditions. The model was trained with data derived from high-speed and Schlieren imaging experiments with a gasoline surrogate fuel, conducted in a constant volume spray vessel. A coolant circulator was used to simulate the low-temperature conditions (−7 °C) typical of cold starts. The results showed good agreement between machine learning predictions and experimental data, with an overall accuracy R2 of 0.99 for predicting liquid penetration and liquid width. In addition, the developed ANN model was able to predict detailed dynamics of spray plumes. This confirms the robustness of the ANN in predicting spray characteristics and offers a promising tool to enhance GDI engine technologies. Full article
(This article belongs to the Special Issue Machine Learning and Artificial Intelligence in Fluid Mechanics)
Show Figures

Figure 1

16 pages, 12812 KiB  
Article
Tracking Long-Lived Free Radicals in Dandelion Caused by Air Pollution Using Electron Paramagnetic Resonance Spectroscopy
by Ireneusz Stefaniuk, Bogumił Cieniek, Agata Ćwik, Katarzyna Kluska and Idalia Kasprzyk
Molecules 2024, 29(21), 5173; https://doi.org/10.3390/molecules29215173 - 31 Oct 2024
Cited by 2 | Viewed by 1288
Abstract
Studies on particulate air pollution indicate that a new type of pollutant should be considered from mainly fossil fuel combustion and automobile exhaust emissions, i.e., environmentally persistent free radicals. These radicals, ubiquitous in the environment, have a long life span and are capable [...] Read more.
Studies on particulate air pollution indicate that a new type of pollutant should be considered from mainly fossil fuel combustion and automobile exhaust emissions, i.e., environmentally persistent free radicals. These radicals, ubiquitous in the environment, have a long life span and are capable of producing harmful reactive oxygen species. Samples of dandelion were collected in 2020 and 2021 in spring and late summer. Roots, leaves, flower stalks, and inflorescences of Taraxacum sp. were collected from six sites with three plants each, along with monitoring of particulate matter air pollution. Four sites were located at streets with heavy traffic and two were control sites in the rural part of the city. The free radical content in each part of the plant was measured by electron paramagnetic resonance. The leaf was selected as the most appropriate part of the plant for the measurement of carbon-derived free radicals. The geff value and the total number of spins were calculated. Relationships were found between location, season, and measurements. The electron paramagnetic resonance spectrum consists of at least two components, which can be attributed to C-type radicals and mixed C + O radicals. Their increase in numbers in the fall seasons, compared to the spring seasons, is also noticeable. It has also been observed that leaves collected in autumn have a higher geff value, which is probably related to the higher amount of oxygen- and carbon-derived free radicals. Full article
Show Figures

Graphical abstract

15 pages, 1626 KiB  
Article
Substitution of Conventional Vehicles in Municipal Mobility
by Sven Wüstenhagen and Thomas Kirschstein
Sustainability 2024, 16(14), 6054; https://doi.org/10.3390/su16146054 - 16 Jul 2024
Cited by 1 | Viewed by 1397
Abstract
Among the economic sectors, mobility is showing significant environmental impacts, especially in the use phase of vehicles. By substituting fossil-fuelled propelling systems, environmental impacts such as the Global Warming Potential (GWP) can be reduced. The use of properly designed light electric vehicles (LEVs) [...] Read more.
Among the economic sectors, mobility is showing significant environmental impacts, especially in the use phase of vehicles. By substituting fossil-fuelled propelling systems, environmental impacts such as the Global Warming Potential (GWP) can be reduced. The use of properly designed light electric vehicles (LEVs) significantly reduces further environmental impacts, as well as maintenance costs, which are relevant for a circular economy. For example, the use of low-voltage (42 V) propelling systems enables the maintenance of LEVs in a broader range of existing bicycle workshops. Regarding the environmental impacts, the described LCA results indicate the advantage of LEVs compared with EVs and ICVs, e.g., vehicle weight is found to be a main factor related to environmental impact for each type of vehicle. This implies a reduced need for battery capacity and lower emissions of particulate matter from tire and break abrasion. This study aims to present the application potential of LEVs and the related reduction in environmental impacts. Anonymised inventory lists of municipal vehicle fleets are analysed for quantifying the substitution potential of LEVs in specific use cases. For this purpose, the use phase of vehicles is analysed with a focus on product design for repair and recycling and supplemented by the results of a comparative environmental impact assessment of internal combustion engine vehicles (ICEVs), electric vehicles (EVs), and LEVs. The comparison is made on the premise of similar application requirements. These specifications are the ability of each of the vehicles to transport a maximum of three persons (driver included) or one driver and 250 kg of cargo in 3 m3 over a daily distance of 100 km in urban areas. On this basis, the municipal environmental benefits derived from substituting small vehicles in the form of ICEVs and EVs with LEVs are assessed. The results show that in the field of municipal mobility, a relevant number of conventional small vehicles can be substituted with LEVs. The environmental impacts in categories of the highest robustness level, RL I, that is, Global Warming Potential, fine dust emissions, and Ozone Depletion Potential, can be reduced by LEVs by 50% compared with EVs and by over 50% compared with ICEVs. The strong influence of vehicle weight on the abrasive conditions of tires and brakes is considerable, as shown by reduced fine dust emissions. Full article
(This article belongs to the Special Issue Sustainability: Resources and Waste Management)
Show Figures

Figure 1

21 pages, 2577 KiB  
Review
Biodiesel Sustainability: Review of Progress and Challenges of Biodiesel as Sustainable Biofuel
by Ade Suhara, Karyadi, Safarudin Gazali Herawan, Andy Tirta, Muhammad Idris, Muhammad Faizullizam Roslan, Nicky Rahmana Putra, April Lia Hananto and Ibham Veza
Clean Technol. 2024, 6(3), 886-906; https://doi.org/10.3390/cleantechnol6030045 - 9 Jul 2024
Cited by 44 | Viewed by 14406
Abstract
Biodiesel, an environmentally degradable and renewable biofuel derived from organic matter, has exhibited its capacity as a viable and sustainable substitute for traditional diesel fuel. Numerous comprehensive investigations have been conducted to assess the effects of biodiesel on internal combustion engines (ICEs), with [...] Read more.
Biodiesel, an environmentally degradable and renewable biofuel derived from organic matter, has exhibited its capacity as a viable and sustainable substitute for traditional diesel fuel. Numerous comprehensive investigations have been conducted to assess the effects of biodiesel on internal combustion engines (ICEs), with particular emphasis on diesel engine performance metrics, combustion dynamics, and emission profiles. Biodiesel demonstrates a significant decrease in emissions of particulate matter (PM), hydrocarbon (HC), and carbon monoxide (CO) in diesel engines. The addition of biodiesel has shown a minor decrease in power output and a slight increase in fuel consumption and nitrogen oxide (NOx) emissions. Nevertheless, the extensive implementation of biodiesel, despite its potential to effectively reduce detrimental emissions, has encountered obstacles stemming from external influences including restricted availability of feedstock, volatile petroleum oil prices, and inadequate governmental backing. This review presents a concise summary of significant advancements in the global adoption of biodiesel from a sustainability perspective. This review provides valuable insights into the challenges and opportunities associated with the advancement of sustainable biofuel technologies by synthesizing the current state of palm biodiesel and examining global trends in biodiesel implementation. The wider adoption of biodiesel can be facilitated by addressing concerns pertaining to feedstock availability, price stability, and policy support. This would allow for the realization of significant environmental advantages and contribute to a more environmentally friendly and sustainable biofuel. Full article
Show Figures

Figure 1

20 pages, 6906 KiB  
Article
Altered Morpho-Functional Features of Neurogenesis in Zebrafish Embryos Exposed to Non-Combustion-Derived Magnetite
by Pietro Cacialli, Serena Ricci, Giulia Pia Servetto, Valeria Franceschini, Francisco Ruiz-Zepeda and Ruggero Vigliaturo
Int. J. Mol. Sci. 2024, 25(12), 6459; https://doi.org/10.3390/ijms25126459 - 12 Jun 2024
Cited by 3 | Viewed by 1686
Abstract
Neurogenesis is the process by which new brain cells are formed. This crucial event emerges during embryonic life and proceeds in adulthood, and it could be influenced by environmental pollution. Non-combustion-derived magnetite represents a portion of the coarse particulate matter (PM) contributing to [...] Read more.
Neurogenesis is the process by which new brain cells are formed. This crucial event emerges during embryonic life and proceeds in adulthood, and it could be influenced by environmental pollution. Non-combustion-derived magnetite represents a portion of the coarse particulate matter (PM) contributing to air and water pollution in urban settings. Studies on humans have reported that magnetite and other iron oxides have significant damaging effects at a central level, where these particles accumulate and promote oxidative stress. Similarly, magnetite nanoparticles can cross the placenta and damage the embryo brain during development, but the impact on neurogenesis is still unknown. Furthermore, an abnormal Fe cation concentration in cells and tissues might promote reactive oxygen species (ROS) generation and has been associated with multiple neurodegenerative conditions. In the present study, we used zebrafish as an in vivo system to analyze the specific effects of magnetite on embryonic neurogenesis. First, we characterized magnetite using mineralogical and spectroscopic analyses. Embryos treated with magnetite at sub-lethal concentrations showed a dose–response increase in ROS in the brain, which was accompanied by a massive decrease in antioxidant genes (sod2, cat, gsr, and nrf2). In addition, a higher number of apoptotic cells was observed in embryos treated with magnetite. Next, interestingly, embryos exposed to magnetite displayed a decrease in neural staminal progenitors (nestin, sox2, and pcna markers) and a neuronal marker (elavl3). Finally, we observed significative increases in apoeb (specific microglia marker) and interleukin-1b (il1b), confirming a status of inflammation in the brain embryos treated with magnetite. Our study represents the very first in vivo evidence concerning the effects of magnetite on brain development. Full article
(This article belongs to the Special Issue The Zebrafish Model in Animal and Human Health Research)
Show Figures

Figure 1

14 pages, 1616 KiB  
Article
Particulate Matter (PM) and Parent, Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Emissions of Emulsified Heavy Fuel Oil in Marine Low-Speed Main Engine
by Penghao Su, Hanzhe Zhang, Liming Peng, Lihong Zhu, Tie Li, Xiaojia Tang and Yimin Zhu
Toxics 2024, 12(6), 404; https://doi.org/10.3390/toxics12060404 - 31 May 2024
Cited by 1 | Viewed by 1433
Abstract
To understand the influences of emulsified fuel on ship exhaust emissions more comprehensively, the emissions of particulate matter (PM), nitrated, oxygenated and parent polycyclic aromatic hydrocarbons (PAHs) were studied on a ship main engine burning emulsified heavy fuel oil (EHFO) and heavy fuel [...] Read more.
To understand the influences of emulsified fuel on ship exhaust emissions more comprehensively, the emissions of particulate matter (PM), nitrated, oxygenated and parent polycyclic aromatic hydrocarbons (PAHs) were studied on a ship main engine burning emulsified heavy fuel oil (EHFO) and heavy fuel oil (HFO) as a reference. The results demonstrate that EHFO (emulsified heavy fuel oil) exhibits notable abilities to significantly reduce emissions of particulate matter (PM) and low molecular weight PAHs (polycyclic aromatic hydrocarbons) in the gas phase, particularly showcasing maximum reductions of 13.99% and 40.5%, respectively. Nevertheless, burning EHFO could increase the emission of high molecular weight PAHs in fine particles and pose a consequent higher carcinogenic risk for individual particles. The total average (gaseous plus particulate) ΣBEQ of EHFO exhausts (41.5 μg/m3) was generally higher than that of HFO exhausts (18.7 μg/m3). Additionally, the combustion of EHFO (extra-heavy fuel oil) can significantly alter the emission quantity, composition, and particle-size distribution of PAH derivatives. These changes may be linked to molecular structures, such as zigzag configurations in C=O bonds. Our findings may favor the comprehensive environmental assessments on the onboard application of EHFO. Full article
Show Figures

Figure 1

17 pages, 4460 KiB  
Article
Nonlinear Predictive Control of Diesel Engine DOC Outlet Temperature
by Xuan Yu, Yuhua Wang, Guiyong Wang, Qianqiao Shen, Boshun Zeng and Shuchao He
Processes 2024, 12(1), 225; https://doi.org/10.3390/pr12010225 - 20 Jan 2024
Cited by 4 | Viewed by 1434
Abstract
In the regeneration mode, precise control of the Diesel Oxidation Catalyst (DOC) outlet temperature is crucial for the complete combustion of carbon Particulate Matter (PM) in the subsequent Diesel Particulate Filter (DPF) and the effective conversion of Nitrogen Oxides (NOx) in the Selective [...] Read more.
In the regeneration mode, precise control of the Diesel Oxidation Catalyst (DOC) outlet temperature is crucial for the complete combustion of carbon Particulate Matter (PM) in the subsequent Diesel Particulate Filter (DPF) and the effective conversion of Nitrogen Oxides (NOx) in the Selective Catalytic Reduction (SCR). The temperature elevation process of the DOC involves a series of intricate physicochemical reactions characterized by high nonlinearity, substantial time delays, and uncertainties. These factors render effective and stable control of the DOC outlet temperature challenging. To address these issues, this study proposes an approach based on Long Short-Term Memory (LSTM) neural networks for Model Predictive Control (MPC), emphasizing precise control of the Diesel Oxidation Catalyst’s outlet temperature during the regeneration mode. To tackle the system’s nonlinear characteristics, LSTM is employed to construct a predictive model for the outlet temperature of the Diesel Oxidation Catalyst, thereby enhancing prediction accuracy. Simultaneously, model predictive control is applied to mitigate the significant time delays inherent in the system. The gradient descent algorithm is utilized within a rolling optimization cycle to optimize the objective function, enabling the rapid determination of the control law. To validate the performance of the proposed control strategy, tracking performance and disturbance rejection tests are conducted. Simulation results demonstrate that, compared to the traditional Proportional Integral Derivative (PID) controller, this control strategy exhibits superior tracking performance and disturbance rejection capabilities. In the regeneration mode, the adoption of this control strategy enables more effective and precise control of the Diesel Oxidation Catalyst’s outlet temperature. Full article
Show Figures

Figure 1

14 pages, 1976 KiB  
Article
Reduction of Outdoor and Indoor PM2.5 Source Contributions via Portable Air Filtration Systems in a Senior Residential Facility in Detroit, Michigan
by Zachary M. Klaver, Ryan C. Crane, Rosemary A. Ziemba, Robert L. Bard, Sara D. Adar, Robert D. Brook and Masako Morishita
Toxics 2023, 11(12), 1019; https://doi.org/10.3390/toxics11121019 - 14 Dec 2023
Cited by 9 | Viewed by 2809
Abstract
Background: The Reducing Air Pollution in Detroit Intervention Study (RAPIDS) was designed to evaluate cardiovascular health benefits and personal fine particulate matter (particulate matter < 2.5 μm in diameter, PM2.5) exposure reductions via portable air filtration units (PAFs) among older adults [...] Read more.
Background: The Reducing Air Pollution in Detroit Intervention Study (RAPIDS) was designed to evaluate cardiovascular health benefits and personal fine particulate matter (particulate matter < 2.5 μm in diameter, PM2.5) exposure reductions via portable air filtration units (PAFs) among older adults in Detroit, Michigan. This double-blind randomized crossover intervention study has shown that, compared to sham, air filtration for 3 days decreased 3-day average brachial systolic blood pressure by 3.2 mmHg. The results also showed that commercially available HEPA-type and true HEPA PAFs mitigated median indoor PM2.5 concentrations by 58% and 65%, respectively. However, to our knowledge, no health intervention study in which a significant positive health effect was observed has also evaluated how outdoor and indoor PM2.5 sources impacted the subjects. With that in mind, detailed characterization of outdoor and indoor PM2.5 samples collected during this study and a source apportionment analysis of those samples using a positive matrix factorization model were completed. The aims of this most recent work were to characterize the indoor and outdoor sources of the PM2.5 this community was exposed to and to assess how effectively commercially available HEPA-type and true HEPA PAFs were able to reduce indoor and outdoor PM2.5 source contributions. Methods: Approximately 24 h daily indoor and outdoor PM2.5 samples were collected on Teflon and Quartz filters from the apartments of 40 study subjects during each 3-day intervention period. These filters were analyzed for mass, carbon, and trace elements. Environmental Protection Agency Positive Matrix Factorization (PMF) 5.0 was utilized to determine major emission sources that contributed to the outdoor and indoor PM2.5 levels during this study. Results: The major sources of outdoor PM2.5 were secondary aerosols (28%), traffic/urban dust (24%), iron/steel industries (15%), sewage/municipal incineration (10%), and oil combustion/refinery (6%). The major sources of indoor PM2.5 were organic compounds (45%), traffic + sewage/municipal incineration (14%), secondary aerosols (13%), smoking (7%), and urban dust (2%). Infiltration of outdoor PM2.5 for sham, HEPA-type, and true HEPA air filtration was 79 ± 24%, 61 ± 32%, and 51 ± 34%, respectively. Conclusions: The results from our study showed that intervention with PAFs was able to significantly decrease indoor PM2.5 derived from outdoor and indoor PM2.5 sources. The PAFs were also able to significantly reduce the infiltration of outdoor PM2.5. The results of this study provide insights into what types of major PM2.5 sources this community is exposed to and what degree of air quality and systolic blood pressure improvements are possible through the use of commercially available PAFs in a real-world setting. Full article
Show Figures

Figure 1

15 pages, 4267 KiB  
Article
Impact of Biofuel Blending on Hydrocarbon Speciation and Particulate Matter from a Medium-Duty Multimode Combustion Strategy
by Yensil Park, Melanie Moses-DeBusk, Scott S. Sluder and Shean P. Huff
Energies 2023, 16(15), 5735; https://doi.org/10.3390/en16155735 - 1 Aug 2023
Cited by 5 | Viewed by 1248
Abstract
The U.S. Department of Energy’s Co-Optima initiative simultaneous focused on diversifying fuel sources, improving efficiency, and reducing emissions through using novel combustion strategies and sustainable fuel blends. For medium-duty/heavy-duty diesel engines, research in this area has led to the development of a multimode [...] Read more.
The U.S. Department of Energy’s Co-Optima initiative simultaneous focused on diversifying fuel sources, improving efficiency, and reducing emissions through using novel combustion strategies and sustainable fuel blends. For medium-duty/heavy-duty diesel engines, research in this area has led to the development of a multimode strategy that uses premixed charge compression ignition (PCCI) at low loads and conventional diesel combustion (CDC) at mid–high loads. The aim of this study was to understand how emissions were impacted when using PCCI instead of CDC at low loads and switching to an oxygenated biofuel blend. It provides a detailed speciation of the hydrocarbon (HC) and particulate matter (PM) emissions from a multimode medium-duty engine operating at low loads in PCCI and CDC modes and high loads in CDC. The effect of the oxygenated biofuel blend on emissions was studied at all three mode–load conditions using #2 ULSD and a bio-derived fuel (25% hexyl hexanoate (HHN)) blended in #2 ULSD. The PCCI mode effectively decreased NOx, total HC, and PM/PN emissions, with a substantial decrease in larger particles (≥50 nm). A PM/PN reduction was observed at high loads with the 25% HHN fuel. While the total HC emissions were not impacted by fuel type, the detailed HC analysis exposed changes in the HC’s composition. Full article
Show Figures

Figure 1

14 pages, 2335 KiB  
Article
Seasonality of Polyaromatic Hydrocarbons (PAHs) and Their Derivatives in PM2.5 from Ljubljana, Combustion Aerosol Source Apportionment, and Cytotoxicity of Selected Nitrated Polyaromatic Hydrocarbons (NPAHs)
by Ivana Drventić, Mateo Glumac, Ivana Carev and Ana Kroflič
Toxics 2023, 11(6), 518; https://doi.org/10.3390/toxics11060518 - 8 Jun 2023
Cited by 8 | Viewed by 3124
Abstract
Airborne particulate matter (PM) is a vector of many toxic pollutants, including polyaromatic hydrocarbons (PAHs) and their derivatives. Especially harmful is the fine fraction (PM2.5), which penetrates deep into the lungs during inhalation and causes various diseases. Amongst PM2.5 components [...] Read more.
Airborne particulate matter (PM) is a vector of many toxic pollutants, including polyaromatic hydrocarbons (PAHs) and their derivatives. Especially harmful is the fine fraction (PM2.5), which penetrates deep into the lungs during inhalation and causes various diseases. Amongst PM2.5 components with toxic potential are nitrated PAHs (NPAHs), knowledge of which is still rudimentary. Three of the measured NPAHs (1-nitropyrene (1-nP), 9-nitroanthracene (9-nA), and 6-nitrochrysene (6-nC)) were detected in ambient PM2.5 from Ljubljana, Slovenia, along with thirteen non-nitrated PAHs. The highest concentrations of pollutants, which are closely linked with incomplete combustion, were observed in the cold part of the year, whereas the concentrations of NPAHs were roughly an order of magnitude lower than those of PAHs throughout the year. Further on, we have evaluated the toxicity of four NPAHs, including 6-nitrobenzo[a]pyrene (6-nBaP), to the human kidney cell line, HEK293T. The most potent was 1-nP (IC50 = 28.7 µM), followed by the other three NPAHs, whose IC50 was above 400 or 800 µM. According to our cytotoxicity assessment, atmospheric 1-nP is the most harmful NPAH among the investigated ones. Despite low airborne concentrations of NPAHs in ambient air, they are generally considered harmful to human health. Therefore, systematic toxicological assessment of NPAHs at different trophic levels, starting with cytotoxicity testing, is necessary in order to accurately evaluate their threat and adopt appropriate abatement strategies. Full article
Show Figures

Graphical abstract

Back to TopTop