Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = cofiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12032 KiB  
Article
Advanced Modulation Formats for 400 Gbps Optical Networks and AI-Based Format Recognition
by Zhou He, Hao Huang, Fanjian Hu, Jiawei Gong, Binghua Shi, Jia Guo and Xiaoran Peng
Sensors 2024, 24(22), 7291; https://doi.org/10.3390/s24227291 - 14 Nov 2024
Viewed by 1718
Abstract
The integration of communication and sensing (ICAS) in optical networks is an inevitable trend in building intelligent, multi-scenario, application-converged communication systems. However, due to the impact of nonlinear effects, co-fiber transmission of sensing signals and communication signals can cause interference to the communication [...] Read more.
The integration of communication and sensing (ICAS) in optical networks is an inevitable trend in building intelligent, multi-scenario, application-converged communication systems. However, due to the impact of nonlinear effects, co-fiber transmission of sensing signals and communication signals can cause interference to the communication signals, leading to an increased bit error rate (BER). This paper proposes a noncoherent solution based on the alternate polarization chirped return-to-zero frequency shift keying (Apol-CRZ-FSK) modulation format to realize a 4 × 100 Gbps dense wavelength division multiplexing (DWDM) optical network. Simulation results show that compared to traditional modulation formats, such as chirped return-to-zero frequency shift keying (CRZ-FSK) and differential quadrature phase shift keying (DQPSK), this solution demonstrates superior resistance to nonlinear effects, enabling longer transmission distances and better transmission performance. Moreover, to meet the transmission requirements and signal sensing and recognition needs in future optical networks, this study employs the Inception-ResNet-v2 convolutional neural network model to identify three modulation formats. Compared with six deep learning methods including AlexNet, ResNet50, GoogleNet, SqueezeNet, Inception-v4, and Xception, it achieves the highest performance. This research provides a low-cost, low-complexity, and high-performance solution for signal transmission and signal recognition in high-speed optical networks designed for integrated communication and sensing. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

6 pages, 351 KiB  
Article
A Model of Directed Graph Cofiber
by Zachary McGuirk and Byungdo Park
Axioms 2022, 11(1), 32; https://doi.org/10.3390/axioms11010032 - 16 Jan 2022
Cited by 1 | Viewed by 2588
Abstract
In the homotopy theory of spaces, the image of a continuous map is contractible to a point in its cofiber. This property does not apply when we discretize spaces and continuous maps to directed graphs and their morphisms. In this paper, we give [...] Read more.
In the homotopy theory of spaces, the image of a continuous map is contractible to a point in its cofiber. This property does not apply when we discretize spaces and continuous maps to directed graphs and their morphisms. In this paper, we give a construction of a cofiber of a directed graph map whose image is contractible in the cofiber. Our work reveals that a category-theoretically correct construction in continuous setup is no longer correct when it is discretized and hence leads to look at canonical constructions in category theory in a different perspective. Full article
(This article belongs to the Special Issue Differential Geometry and Its Application)
Show Figures

Figure 1

12 pages, 4668 KiB  
Article
Optical Trajectory Manipulations Using the Self-Written Waveguide Technique
by Ra’ed Malallah, Derek Cassidy, Min Wan, Inbarasan Muniraj, John J. Healy and John T. Sheridan
Polymers 2020, 12(7), 1438; https://doi.org/10.3390/polym12071438 - 27 Jun 2020
Cited by 5 | Viewed by 3419
Abstract
This study is novel for several reasons: We used a thin drop cast layer of dry photosensitive materials to study the behaviors of wet photopolymer media using microscopic distances during the Self-Written Waveguide (SWW) process; then, we examined the self-trajectories formed inside the [...] Read more.
This study is novel for several reasons: We used a thin drop cast layer of dry photosensitive materials to study the behaviors of wet photopolymer media using microscopic distances during the Self-Written Waveguide (SWW) process; then, we examined the self-trajectories formed inside the solid material. The results provide a framework for theoretical and experimental examinations by handling the effects of manipulating the alignment of fibers. The other main advantage of these techniques is their lightweight, easy to process, highly flexible, and ultimately low-cost nature. First, the SWW process in wet photopolymer media (liquid solutions) was examined under three cases: single-, counter-, and co-fiber exposure. Then, the SWWs formed inside the solid material were examined along with the effects of manipulating the alignment of the fibers. In all cases, high precision measurements were used to position the fiber optic cables (FOCs) before exposure using a microscope. The self-writing process was indirectly monitored by observing (imaging) the light emerging from the side of the material sample during SWW formation. In this way, we examined the optical waveguide trajectories formed in Acrylamide/Polyvinyl Alcohol (AA/PVA), a photopolymer material (sensitized at 532 nm). First, the transmission of light by this material is characterized. Then, the bending and merging of the waveguides that occur are investigated. The predictions of our model are shown to qualitatively agree with the observed trajectories. The largest index changes taking place at any time during exposure, i.e., during SWW formation, are shown to take place at the positions where the largest exposure light intensity is present. Typically, such maxima exist close to the input face. The first maximum is referred to as the location of the Primary Eye. Other local maxima also appear further along the SWW and are referred to as Secondary Eyes, i.e., eyes deeper within the material. Full article
Show Figures

Graphical abstract

Back to TopTop