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Abstract: In the homotopy theory of spaces, the image of a continuous map is contractible to a point
in its cofiber. This property does not apply when we discretize spaces and continuous maps to
directed graphs and their morphisms. In this paper, we give a construction of a cofiber of a directed
graph map whose image is contractible in the cofiber. Our work reveals that a category-theoretically
correct construction in continuous setup is no longer correct when it is discretized and hence leads to
look at canonical constructions in category theory in a different perspective.
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1. Introduction

Directed graphs are everywhere. They are fundamental mathematical objects not
only for mathematical interests but also for applications including electric circuits, neural
networks, social relationships, etc. [1,2]. Naturally classifying directed graphs through
algebraic invariants is an important problem, and there have been various attempts (see [3]
and references therein). Among them, a recent development of path-space homology
and cohomology for directed graphs by Grigor’yan, Lin, Muranov, and Yau [3–5] is of
particular interest. Their constructions are not too trivial, not too hard to compute, can be
non-trivial for degrees greater than one, and satisfy similar properties to those invariants in
the continuous and smooth setup. It turns out that path-space homology satisfies discrete
analogs of Eilenberg–Steenrod axioms [6], i.e., the Künneth formula [7]; it is generalized to
multigraphs and quivers [8] and has applications to discretizing Morse theory [9].

An interesting result regarding the path space homology is that it satisfies homotopy
invariance. The history of homotopy theory for directed graphs goes back to [10,11]
and more recently to [12]. In 2014, Grigor’yan, Lin, Muranov, and Yau [13] considered
digraph homotopy as a notion of a discrete analog of homotopy in topology and proved
that their path-space homology is invariant under this version of homotopy. Indeed,
their homotopy theory for directed graphs is a natural “discretization” that is leading to
establishing a dictionary between homotopy theory of spaces and its discrete counterpart.
For example, several theorems in classical homotopy theory, such as van Kampen theorem,
Hurewicz theorem, and Brown representability theorem [14,15], are successfully discretized
(see [13,16]), and model structures in the category of directed graphs and related questions
are currently being investigated [17].

From the perspective of homotopy theory and category theory, the homotopy theory
for directed graphs is an interesting source to understand existing classical results. Any
time a classical construction or theory fails to be discretized or satisfy expected properties,
the failure itself or remedies to it reveal the essence of the classical theory. For example, the
path-space homology satisfies all discrete analogs of Eilenberg–Steenrod axioms, but these
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axioms are not complete (see [6]), and we note that the completeness of Eilenberg–Steenrod
axioms has a topological nature in it. Another example is a failure of homotopy extension
property for directed graphs [16], which reveals that the Brown representability theorem
for not-necessarily-finite CW complexes is likely to be a special feature of CW complexes
rather than a consequence of generalities in category theory.

In [16], the authors have proven Brown representability theorem for finite directed
graphs by adopting the methodology of J. F. Adams [18]. The gist of technical innova-
tion was the use of digraph cofibers and mapping tubes (see [16] (Definitions 2.21 and
2.25)). It means that a natural discretization of Adams’ proof itself does not yield Brown
representability theorem, but by appropriately modifying category-theoretic and homotopy-
theoretic constructions, one can obtain this result. Accordingly, searching for constructions
in directed graphs that satisfy general homotopy-theoretic properties lies at the technical
core of discretizing classical results.

This paper is a brief note on a possible construction of a cofiber of directed graph
map satisfying the property that the image of the directed graph map can be homotoped
to a point. A cofiber of continuous map in the category of spaces satisfies this property
in an obvious manner. However, in the category of directed graphs, any time there is an
edge from a vertex in the range of the directed graph map to a vertex outside, it prevents
defining a directed graph homotopy. We have constructed a model of cofiber that is free
from such issues.

This paper is organized as follows. Section 2 collects preliminaries to work in the
category of directed graphs. Sections 3 and 4 review necessary operations in the category
of directed graphs and homotopy theory for directed graphs. In Section 5, we give a
construction of a directed graph cofiber proposed above and prove that it satisfies the
desired property.

2. The Category of Directed Graphs

In this section, we shall review basic definitions and notations comprising the category
of directed graphs.

Definition 1 ([13]). A directed graph (or digraph for short) ~G is a pair (V, E) consisting of a
set of vertices V and a set E of ordered pairs of distinct vertices in V called edges.

Note that our digraphs do not allow loop-edges or multiple edges with the same
source and target. A point is a digraph (V, E) with V a singleton and E an empty set.

Definition 2. Let n ∈ Z+. An n-step line digraph is a digraph consisting of vertices labeled by
0, 1, · · · , n and exactly one edge at every two consecutive vertices, i.e., either (i− 1, i) or (i, i− 1)
for all i ∈ Z+ such that 1 ≤ i ≤ n.

An n-step line digraph is also called a path digraph or a linear digraph. When n = 1,
there are two possible line digraphs, I+ := 0→ 1 and I− := 0← 1.

Notation 1. We will denote by In an arbitrary n-step line digraph and by In the totality of all
possible n-step line digraphs. The set of all line digraphs of any length will be denoted by I =

⋃
n In.

Definition 3. A digraph map, f : ~G → ~H, is a function from the vertex set of ~G to the vertex set
of ~H such that whenever (x, y) is an edge in ~G either f (x) = f (y) in ~H or ( f (x), f (y)) is an edge
in ~H.

Definition 4. The image digraph Im( f ) of a digraph map f : ~G → ~H is a directed graph consisting of
a vertex set f (V~G) and an edge set E~G = {( f (x), f (y)) : x, y ∈ V~G, f (x) 6= f (y), and (x, y) ∈ E~G}.

Definition 5. The category of directed graphs D is a category in which the objects are directed
graphs, ~G, and the morphisms are digraph maps, f : ~G → ~H.
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3. Operations in Directed Graphs

In this section, we review operations in directed graphs. The definition of an identifi-
cation digraph is central in yielding homotopy-theoretic constructions in the category of
directed graphs.

Definition 6. A sub-digraph ~X of a digraph ~G denoted ~X ⊂ ~G is a digraph for which V~X ⊂ V~G
and E~X ⊂ E~G.

Note that even if u, v ∈ V~X and (u, v) ∈ E~G, it is not necessarily the case that (u, v) ∈ E~X.

Definition 7. An induced sub-digraph ~X of a digraph ~G denoted ~X @ ~G is a sub-digraph in
which whenever u, v ∈ V~X and (u, v) ∈ E~G, then (u, v) ∈ E~X as well.

Definition 8. The vertex boundary of a sub-digraph ~X ⊂ ~G is

∂~X := {g ∈ V~G \V~X | either (g, x) ∈ E~G or (x, g) ∈ E~G, where x ∈ V~X}.

Definition 9. The intersection of digraphs ~G and ~H, denoted by ~G ∩ ~H, is the digraph consisting
of V~G∩~H = V~G ∩V~H and E~G∩~H = E~G ∩ E~H .

Definition 10. The union of digraphs ~G and ~H, denoted by ~G ∪ ~H, is the digraph consisting of
V~G∪~H = V~G ∪V~H and E~G∪~H = E~G ∪ E~H .

Definition 11. The disjoint union of two digraphs ~G and ~H, denoted ~G ä ~H is given by the
disjoint union of their respective vertex sets and edge sets, as sets.

Definition 12. The graph Cartesian product � of two directed graphs ~G and ~H is a directed
graph ~G�~H, where the vertices are all ordered pairs (u, v) such that u ∈ V~G and v ∈ V~H , and
(u1, v1)→ (u2, v2) is an edge in ~G�~H if either u1 = u2 and v1 → v2 in ~H, or u1 → u2 in ~G and
v1 = v2.

Remark 1. Given a fixed vertex v0 ∈ V~H , we will denote by ~G�{v0} the v0-slice of ~G�~H. It is
the induced sub-digraph where the vertices are all ordered pairs (u, v0) such that u ∈ V~G and the
edges are those resulting from the edges of ~G.

Definition 13. Let ~G and ~H be digraphs and ∼ an equivalence relation on vertex sets of ~G and ~H
such that whenever (g1, g2) ∈ E~G, g1 ∼ h1, and g2 ∼ h2, then either h1 = h2 or (h1, h2) ∈ E~H .
The identification digraph resulting from the relation ∼ is a digraph ~G ä ~H/ ∼ whose vertices
are equivalence classes and whose edges are the edges between the representatives of the classes.

Definition 14. A quotient digraph ~G/~X, for ~X ⊂ ~G and ~X not necessarily connected, is an
identification digraph ~G ä ∗/ ∼ where x ∼ ∗ for all x ∈ V~X .

4. Homotopy for Digraphs

In this section, we review the notion of homotopy a là Grigor’yan, Lin, Muranov,
and Yau [13].

Definition 15. Two digraph maps f , g : ~G → ~H are homotopic, denoted f ' g, if there exists
an n ≥ 1 and a digraph map F : ~G�In → ~H, for some line digraph In ∈ In (recall Notation 1),
such that F |~G×{0}= f and F |~G×{n}= g.
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Definition 16. Two digraphs are said to be homotopically equivalent (or to be of the same
homotopy type) if there exist two digraph maps, g : ~G → ~H and h : ~H → ~G, such that h ◦ g ' id~G
and g ◦ h ' id~H .

Example 1. Let f : ~G → ~H be a digraph map. The mapping cylinder ~M f and the digraph ~H are
homotopically equivalent. This can be shown by taking a homotopy F : ~M f�I− → ~M f defined by
F(−, 0) = id ~M f

, F((g, 0), 1) = ( f (g), 1) for all g ∈ V~G and F((h, 1), 1) = (h, 1) for all h ∈ V~H .

Definition 17. A digraph ~G is said to be contractible if there exists a homotopy between id~G and
a constant digraph map.

Definition 18. The homotopy category of directed graphs, denoted HoD, is a category in
which the objects are directed graphs and the morphisms are equivalence classes of digraph maps
where f ' g whenever f and g are homotopic.

5. Main Construction

In this section, we give a construction of a digraph cofiber satisfying the property that
the image of a digraph map is contractible in the digraph cofiber. To this end, we set up
extensions of a mapping cylinder and a cone that enables lifting edges. The main outcome
in this paper is Construction 1, from which Theorem 1 follows.

Definition 19. The mapping cylinder of a digraph map f : ~G → ~H is given by

~M f := [~G�I−ä ~H]/ ∼,

where (g, 0) ∼ f (g) for all g ∈ V~G.

Definition 20. An extension of a mapping cylinder ~M f for a digraph map f : ~G → ~H is the
digraph ~E f = (V~E f

, E~E f
) where,

V~E f
= V~G ä V~H ,

and (u, v) is an edge in E~E f
if (u, f (v)) ∈ E~H for some u ∈ V~H and v ∈ V~G or in the opposite

direction (v, u) is an edge if ( f (v), u) ∈ E~H for some u ∈ V~H and v ∈ V~G.

Definition 21. An extended mapping cylinder for a digraph map f : ~G → ~H is given by the
digraph

−→
EM f = ~M f ∪ ~E f .

Definition 22. The cone C~G over a digraph ~G is the digraph [~G�I−]/∼, where (g, 0) ∼ ∗ for
all g ∈ V~G.

Definition 23. An extension of a cone over a sub-digraph ~X ⊂ ~H is the digraph ~B~X = (V~B~X
, E~B~X

)

where V~B~X
= ∂~X ∪ {p}, p is the cone point, and (p, y) ∈ E~B~X

if and only if (x, y) ∈ E~H for some

x ∈ ~X and y ∈ ∂~X or (y, p) ∈ E~B~X
if and only if (y, x) ∈ E~H for some x ∈ ~X and y ∈ ∂~X.

Definition 24. An extended cone over the sub-digraph ~X in ~H is C~X ∪ ~B~X .

Construction 1. The digraph cofiber ~C( f ) for a map f : ~G → ~H is an extension of a cone
over ~G ä Im( f ) (viewed as an induced subdigraph of ~M f ) unioned with the identification di-
graph ~G�I+ ä ~H/ ∼ where (g, 0) ∼ f (g) and the extension of this reversed mapping cylinder
(See Figure 1).
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Figure 1. Digraph cofiber of a digraph map f : ~G → ~H.

Remark 2. The resulting structure in the above definition is a “two-step extended cone” with a
middle slice that preserves a copy of ~G. It should be noted that ~C( f ) is not a category-theoretic
cofiber. However, from the perspective of homotopy theory for digraphs, category-theoretic cofibers do
not carry much meaning. Specifically, for a digraph map f : ~G → ~H, note that its category-theoretic
cofiber is a pushout of the following diagram in the category D.

~G
j1 //

j2
��

~M f

•

where • is a point, j1 the inclusion, and j2 the constant map. Not only does the pushout not have a
slice of ~G in it, and as mentioned in Section 1, but one cannot homotope Im( f ) to the vertex of the
cone. To further develop homotopy theory for digraphs, we have to construct a cofiber that retains
essential properties of a cofiber of continuous map, and from the construction above, one can see that
our construction retains a copy of the domain digraph ~G. We claim that Im( f ) can be homotoped to
the cone vertex as stated below.

Theorem 1. Suppose f : ~G → ~H is a map of digraphs. Consider the sequence ~G
f→ ~H i→ ~C( f )

where the map i is the inclusion. Then the composition i ◦ f is homotopically trivial.

Proof. We have to prove that the subdigraph Im( f ) is contractible in ~C( f ). By construction
of ~C( f ), we define a homotopy F1 : ~C( f )�I+ → ~C( f ) that takes every f (g) ∈ Im( f ) for
g ∈ V~G to (g, 1) in the ~G�{1}-slice in ~G�I+ ä ~H/∼ and then F2 : ~C( f )�I+ → ~C( f ) that
takes this slice to the cone vertex. The existence of digraph maps F1 and F2 is guaranteed
by Definition 23.

6. Discussion

In this article, we have constructed a model of a cofiber of a digraph map. A cofiber of
a continuous map in the category of spaces loses homotopy-theoretically essential prop-
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erties after being discretized to a category-theoretic cofiber in the category of digraphs.
Our construction retains those essential properties, as seen in Section 5. In addition, our
work reveals that a universal construction in category theory is not necessarily a homotopy-
theoretically correct construction when we consider a category consisting of discrete objects.
Therefore, further research in this category will provide interesting perspectives for cate-
gory theory.
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