Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = coccolithovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2550 KiB  
Article
Functional Profiling and Evolutionary Analysis of a Marine Microalgal Virus Pangenome
by Briallen Lobb, Anson Shapter, Andrew C. Doxey and Jozef I. Nissimov
Viruses 2023, 15(5), 1116; https://doi.org/10.3390/v15051116 - 5 May 2023
Cited by 3 | Viewed by 3128
Abstract
Phycodnaviridae are large double-stranded DNA viruses, which facilitate studies of host–virus interactions and co-evolution due to their prominence in algal infection and their role in the life cycle of algal blooms. However, the genomic interpretation of these viruses is hampered by a lack [...] Read more.
Phycodnaviridae are large double-stranded DNA viruses, which facilitate studies of host–virus interactions and co-evolution due to their prominence in algal infection and their role in the life cycle of algal blooms. However, the genomic interpretation of these viruses is hampered by a lack of functional information, stemming from the surprising number of hypothetical genes of unknown function. It is also unclear how many of these genes are widely shared within the clade. Using one of the most extensively characterized genera, Coccolithovirus, as a case study, we combined pangenome analysis, multiple functional annotation tools, AlphaFold structural modeling, and literature analysis to compare the core and accessory pangenome and assess support for novel functional predictions. We determined that the Coccolithovirus pangenome shares 30% of its genes with all 14 strains, making up the core. Notably, 34% of its genes were found in at most three strains. Core genes were enriched in early expression based on a transcriptomic dataset of Coccolithovirus EhV-201 algal infection, were more likely to be similar to host proteins than the non-core set, and were more likely to be involved in vital functions such as replication, recombination, and repair. In addition, we generated and collated annotations for the EhV representative EhV-86 from 12 different annotation sources, building up information for 142 previously hypothetical and putative membrane proteins. AlphaFold was further able to predict structures for 204 EhV-86 proteins with a modelling accuracy of good–high. These functional clues, combined with generated AlphaFold structures, provide a foundational framework for the future characterization of this model genus (and other giant viruses) and a further look into the evolution of the Coccolithovirus proteome. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

14 pages, 1812 KiB  
Article
Emerging Interaction Patterns in the Emiliania huxleyi-EhV System
by Eliana Ruiz, Monique Oosterhof, Ruth-Anne Sandaa, Aud Larsen and António Pagarete
Viruses 2017, 9(3), 61; https://doi.org/10.3390/v9030061 - 22 Mar 2017
Cited by 14 | Viewed by 8037 | Correction
Abstract
Viruses are thought to be fundamental in driving microbial diversity in the oceanic planktonic realm. That role and associated emerging infection patterns remain particularly elusive for eukaryotic phytoplankton and their viruses. Here we used a vast number of strains from the model system [...] Read more.
Viruses are thought to be fundamental in driving microbial diversity in the oceanic planktonic realm. That role and associated emerging infection patterns remain particularly elusive for eukaryotic phytoplankton and their viruses. Here we used a vast number of strains from the model system Emiliania huxleyi/Emiliania huxleyi Virus to quantify parameters such as growth rate (µ), resistance (R), and viral production (Vp) capacities. Algal and viral abundances were monitored by flow cytometry during 72-h incubation experiments. The results pointed out higher viral production capacity in generalist EhV strains, and the virus-host infection network showed a strong co-evolution pattern between E. huxleyi and EhV populations. The existence of a trade-off between resistance and growth capacities was not confirmed. Full article
(This article belongs to the Special Issue Marine Viruses 2016)
Show Figures

Figure 1

20 pages, 5240 KiB  
Article
Coccolithoviruses: A Review of Cross-Kingdom Genomic Thievery and Metabolic Thuggery
by Jozef I. Nissimov, António Pagarete, Fangrui Ma, Sean Cody, David D. Dunigan, Susan A. Kimmance and Michael J. Allen
Viruses 2017, 9(3), 52; https://doi.org/10.3390/v9030052 - 18 Mar 2017
Cited by 23 | Viewed by 8396
Abstract
Coccolithoviruses (Phycodnaviridae) infect and lyse the most ubiquitous and successful coccolithophorid in modern oceans, Emiliania huxleyi. So far, the genomes of 13 of these giant lytic viruses (i.e., Emiliania huxleyi viruses—EhVs) have been sequenced, assembled, and annotated. Here, we performed [...] Read more.
Coccolithoviruses (Phycodnaviridae) infect and lyse the most ubiquitous and successful coccolithophorid in modern oceans, Emiliania huxleyi. So far, the genomes of 13 of these giant lytic viruses (i.e., Emiliania huxleyi viruses—EhVs) have been sequenced, assembled, and annotated. Here, we performed an in-depth comparison of their genomes to try and contextualize the ecological and evolutionary traits of these viruses. The genomes of these EhVs have from 444 to 548 coding sequences (CDSs). Presence/absence analysis of CDSs identified putative genes with particular ecological significance, namely sialidase, phosphate permease, and sphingolipid biosynthesis. The viruses clustered into distinct clades, based on their DNA polymerase gene as well as full genome comparisons. We discuss the use of such clustering and suggest that a gene-by-gene investigation approach may be more useful when the goal is to reveal differences related to functionally important genes. A multi domain “Best BLAST hit” analysis revealed that 84% of the EhV genes have closer similarities to the domain Eukarya. However, 16% of the EhV CDSs were very similar to bacterial genes, contributing to the idea that a significant portion of the gene flow in the planktonic world inter-crosses the domains of life. Full article
(This article belongs to the Special Issue Marine Viruses 2016)
Show Figures

Figure 1

15 pages, 5590 KiB  
Article
Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment
by Andrea Highfield, Ian Joint, Jack A. Gilbert, Katharine J. Crawfurd and Declan C. Schroeder
Viruses 2017, 9(3), 41; https://doi.org/10.3390/v9030041 - 8 Mar 2017
Cited by 11 | Viewed by 9954
Abstract
Effects of elevated pCO2 on Emiliania huxleyi genetic diversity and the viruses that infect E. huxleyi (EhVs) have been investigated in large volume enclosures in a Norwegian fjord. Triplicate enclosures were bubbled with air enriched with CO2 to 760 ppmv [...] Read more.
Effects of elevated pCO2 on Emiliania huxleyi genetic diversity and the viruses that infect E. huxleyi (EhVs) have been investigated in large volume enclosures in a Norwegian fjord. Triplicate enclosures were bubbled with air enriched with CO2 to 760 ppmv whilst the other three enclosures were bubbled with air at ambient pCO2; phytoplankton growth was initiated by the addition of nitrate and phosphate. E. huxleyi was the dominant coccolithophore in all enclosures, but no difference in genetic diversity, based on DGGE analysis using primers specific to the calcium binding protein gene (gpa) were detected in any of the treatments. Chlorophyll concentrations and primary production were lower in the three elevated pCO2 treatments than in the ambient treatments. However, although coccolithophores numbers were reduced in two of the high-pCO2 treatments; in the third, there was no suppression of coccolithophores numbers, which were very similar to the three ambient treatments. In contrast, there was considerable variation in genetic diversity in the EhVs, as determined by analysis of the major capsid protein (mcp) gene. EhV diversity was much lower in the high-pCO2 treatment enclosure that did not show inhibition of E. huxleyi growth. Since virus infection is generally implicated as a major factor in terminating phytoplankton blooms, it is suggested that no study of the effect of ocean acidification in phytoplankton can be complete if it does not include an assessment of viruses. Full article
(This article belongs to the Special Issue Marine Viruses 2016)
Show Figures

Figure 1

17 pages, 486 KiB  
Article
Coccolithophores: Functional Biodiversity, Enzymes and Bioprospecting
by Emma L. Reid, Charlotte A. Worthy, Ian Probert, Sohail T. Ali, John Love, Johnathan Napier, Jenny A. Littlechild, Paul J. Somerfield and Michael J. Allen
Mar. Drugs 2011, 9(4), 586-602; https://doi.org/10.3390/md9040586 - 11 Apr 2011
Cited by 8 | Viewed by 11418
Abstract
Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an ‘in [...] Read more.
Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an ‘in house‘ enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase. Full article
(This article belongs to the Special Issue Enzymes from the Sea: Sources, Molecular Biology and Bioprocesses)
Show Figures

Graphical abstract

Back to TopTop