Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = coaxial electrospray

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3732 KiB  
Article
Evaluation of Antioxidant and Antibacterial Activity of Gelatin Nanoparticles with Bitter Orange Peel Extract for Food Applications
by Adamaris García-Juárez, Alba Mery Garzón-García, José Rogelio Ramos-Enríquez, José Agustín Tapia-Hernández, Saúl Ruiz-Cruz, Dalila Fernanda Canizales-Rodríguez, Carmen Lizette Del-Toro-Sánchez, Francisco Rodríguez-Félix, Víctor Manuel Ocaño-Higuera and José de Jesús Ornelas-Paz
Foods 2024, 13(23), 3838; https://doi.org/10.3390/foods13233838 - 28 Nov 2024
Cited by 2 | Viewed by 1870
Abstract
Bitter orange is a citrus fruit rich in bioactive compounds, but its waste is currently underutilized. One potential solution is to encapsulate these bioactive compounds. This research aims to synthesize gelatin nanoparticles loaded with an ethanolic extract of bitter orange peel and to [...] Read more.
Bitter orange is a citrus fruit rich in bioactive compounds, but its waste is currently underutilized. One potential solution is to encapsulate these bioactive compounds. This research aims to synthesize gelatin nanoparticles loaded with an ethanolic extract of bitter orange peel and to evaluate their in vitro antioxidant and antibacterial activities. Coaxial electrospray was used to encapsulate the ethanolic extract of bitter orange with bovine gelatin as wall material, considering a voltage of 15 kV, a wall solution flow rate of 0.1 mL/h, and a core solution flow rate of 0.08 mL/h. Characterization of the nanoparticles was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Antioxidant activity was evaluated by the total phenolic content, flavonoids, and antioxidant capacity by the DPPH, ABTS•+, and FRAP assays. Antibacterial activity was assessed by the well diffusion technique on Mueller–Hinton agar against Listeria monocytogenes and Escherichia coli O157:H7 bacteria. SEM images confirmed that the nanoparticles were spherical in shape, while FT-IR analysis indicated that the incorporation of the extract did not alter the amide bonds of the gelatin protein. The nanoparticles containing the extract exhibited higher antioxidant activity and heightened inhibition against E. coli O157:H7, indicating their potential food applications. Full article
Show Figures

Figure 1

19 pages, 7438 KiB  
Article
Engineering pH and Temperature-Triggered Drug Release with Metal-Organic Frameworks and Fatty Acids
by Wanying Wei and Ping Lu
Molecules 2024, 29(22), 5291; https://doi.org/10.3390/molecules29225291 - 8 Nov 2024
Viewed by 2052
Abstract
This study reports the successful synthesis of core-shell microparticles utilizing coaxial electrospray techniques, with zeolitic imidazolate framework-8 (ZIF-8) encapsulating rhodamine B (RhB) in the core and a phase change material (PCM) shell composed of a eutectic mixture of lauric acid (LA) and stearic [...] Read more.
This study reports the successful synthesis of core-shell microparticles utilizing coaxial electrospray techniques, with zeolitic imidazolate framework-8 (ZIF-8) encapsulating rhodamine B (RhB) in the core and a phase change material (PCM) shell composed of a eutectic mixture of lauric acid (LA) and stearic acid (SA). ZIF-8 is well-recognized for its pH-responsive degradation and biocompatibility, making it an ideal candidate for targeted drug delivery. The LA-SA PCM mixture, with a melting point near physiological temperature (39 °C), enables temperature-triggered drug release, enhancing therapeutic precision. The structural properties of the microparticles were extensively characterized through scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Drug release studies revealed a dual-stimuli response, where the release of RhB was significantly influenced by both temperature and pH. Under mildly acidic conditions (pH 4.0) at 40 °C, a rapid and complete release of RhB was observed within 120 h, while at 37 °C, the release rate was notably slower. Specifically, the release at 40 °C was 79% higher than at 37 °C, confirming the temperature sensitivity of the system. Moreover, at physiological pH (7.4), minimal drug release occurred, demonstrating the system’s potential for minimizing premature drug release under neutral conditions. This dual-stimuli approach holds promise for improving therapeutic outcomes in cancer treatment by enabling precise control over drug release in response to both pH and localized hyperthermia, reducing off-target effects and improving patient compliance. Full article
Show Figures

Figure 1

10 pages, 1007 KiB  
Article
Core–Shell Microspheres with Encapsulated Gold Nanoparticle Carriers for Controlled Release of Anti-Cancer Drugs
by Lin Guo, Qilong Zhao and Min Wang
J. Funct. Biomater. 2024, 15(10), 277; https://doi.org/10.3390/jfb15100277 - 24 Sep 2024
Cited by 4 | Viewed by 1783
Abstract
Cancer is one of the major threats to human health and lives. However, effective cancer treatments remain a great challenge in clinical medicine. As a common approach for cancer treatment, chemotherapy has saved the life of millions of people; however, patients who have [...] Read more.
Cancer is one of the major threats to human health and lives. However, effective cancer treatments remain a great challenge in clinical medicine. As a common approach for cancer treatment, chemotherapy has saved the life of millions of people; however, patients who have gone through chemotherapy often suffer from severe side effects owing to the inherent cytotoxicity of anti-cancer drugs. Stabilizing the blood concentration of an anti-cancer drug will reduce the occurrence or severity of side effects, and relies on using an appropriate drug delivery system (DDS) for achieving sustained or even on-demand drug delivery. However, this is still an unmet clinical challenge since the mainstay of anti-cancer drugs is small molecules, which tend to be diffused rapidly in the body, and conventional DDSs exhibit the burst release phenomenon. Here, we establish a class of DDSs based on biodegradable core–shell microspheres with encapsulated doxorubicin hydrochloride-loaded gold nanoparticles (DOX@Au@MSs), with the core–shell microspheres being made of poly(lactic-co-glycolic acid) in the current study. By harnessing the physical barrier of the biodegradable shell of core–shell microspheres, DOX@Au@MSs can provide a sustained release of the anti-cancer drug in the test duration (which is 21 days in the current study). Thanks to the photothermal properties of the encapsulated gold nanoparticle carriers, the core–shell biodegradable microspheres can be ruptured through remotely controlled near-infrared (NIR) light, thereby achieving an NIR-controlled triggered release of the anti-cancer drug. Furthermore, the route of the DOX-Au@MS-enabled controlled release of the anti-cancer drug can provide durable cancer cell ablation for the long period of 72 h. Full article
Show Figures

Figure 1

20 pages, 3860 KiB  
Article
Ethyl Cellulose-Core, OSA Starch-Shell Electrosprayed Microcapsules Enhance the Oxidative Stability of Loaded Fish Oil
by Elnaz Z. Fallahasghari, Peter Reimer Stubbe, Ioannis S. Chronakis and Ana C. Mendes
Nanomaterials 2024, 14(6), 510; https://doi.org/10.3390/nano14060510 - 12 Mar 2024
Cited by 10 | Viewed by 2287
Abstract
The encapsulation and the oxidative stability of cod liver fish oil (CLO) within coaxial electrosprayed (ethyl cellulose/CLO) core–(octenyl succinic anhydride, OSA-modified starch) shell, and monoaxial electrosprayed ethyl cellulose/CLO microcapsules were investigated. Core–shell (H-ECLO) and monoaxial (ECLO) electrosprayed microcapsules with an average diameter of [...] Read more.
The encapsulation and the oxidative stability of cod liver fish oil (CLO) within coaxial electrosprayed (ethyl cellulose/CLO) core–(octenyl succinic anhydride, OSA-modified starch) shell, and monoaxial electrosprayed ethyl cellulose/CLO microcapsules were investigated. Core–shell (H-ECLO) and monoaxial (ECLO) electrosprayed microcapsules with an average diameter of 2.8 ± 1.8 µm, and 2.2 ± 1.4 µm, respectively, were produced. Confocal microscopy confirmed not only the core–shell structure of the H-ECLO microcapsules, but also the location of the CLO in the core. However, for the ECLO microcapsules, the CLO was distributed on the microcapsules’ surface, as also confirmed by Raman spectroscopy. Atomic force microscopy showed that the average surface adhesion of the H-ECLO microcapsules was significantly lower (5.41 ± 0.31 nN) than ECLO microcapsules (18.18 ± 1.07 nN), while the H-ECLO microcapsules showed a remarkably higher Young’s modulus (33.84 ± 4.36 MPa) than the ECLO microcapsules (6.64 ± 0.84 MPa). Differential scanning calorimetry results confirmed that the H-ECLO microcapsules enhanced the oxidative stability of encapsulated CLO by about 15 times, in comparison to non-encapsulated oil, mainly by preventing the presence of the fish oil at the surface of the microcapsules, while ECLO microcapsules enhanced the oxidative stability of CLO about 2.9 times due to the hydrophobic interactions of the oil and ethyl cellulose. Furthermore, the finite element method was also used to evaluate the electric field strength distribution, which was substantially higher in the vicinity of the collector and lower in the proximity of the nozzle when the coaxial electrospray process was employed in comparison to the monoaxial process. Full article
Show Figures

Graphical abstract

19 pages, 4878 KiB  
Article
Carbohydrate Core–Shell Electrosprayed Microcapsules for Enhanced Oxidative Stability of Vitamin A Palmitate
by Elnaz Z. Fallahasghari, Marie Højgaard Lynge, Emma Espholin Gudnason, Kristin Munkerup, Ana C. Mendes and Ioannis S. Chronakis
Pharmaceutics 2023, 15(11), 2633; https://doi.org/10.3390/pharmaceutics15112633 - 16 Nov 2023
Cited by 12 | Viewed by 2207
Abstract
Vitamin A is an essential micronutrient that is readily oxidized. In this study, the encapsulation of vitamin A palmitate (AP) within a core–shell carbohydrate matrix by co-axial electrospray and its oxidative stability was evaluated. The electrosprayed core–shell microcapsules consisted of a shell of [...] Read more.
Vitamin A is an essential micronutrient that is readily oxidized. In this study, the encapsulation of vitamin A palmitate (AP) within a core–shell carbohydrate matrix by co-axial electrospray and its oxidative stability was evaluated. The electrosprayed core–shell microcapsules consisted of a shell of octenyl succinic anhydride (OSA) modified corn starch, maltose (Hi-Cap), and a core of ethyl cellulose–AP (average diameter of about 3.7 µm). The effect of different compounds (digestion-resistant maltodextrin, soy protein hydrolysate, casein protein hydrolysate, and lecithin) added to the base core–shell matrix formulation on the oxidative stability of AP was investigated. The oxidative stability of AP was evaluated using isothermal and non-isothermal differential scanning calorimetry (DSC), and Raman and Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectroscopy methods. The core–shell carbohydrate matrix minimizes the amount of AP present at the microparticle surface, thus protecting AP from oxidation. Furthermore, the most effective oxidation protection was achieved when casein protein hydrolysate was added to the core of the microcapsule due to hydrophobic and hydrogen bond interactions with AP and by the resistant maltodextrin in the shell, which acted as a filler. The utilization of ethanol as a solvent for the dispersion of the core compounds increased the hydrophobicity of the hydrolyzed proteins and contributed to the enhancement of their antioxidant ability. Both the carbohydrate core–shell microcapsule prepared by co-axial electrospray and the addition of oxidation protection compounds enhance the oxidative stability of the encapsulated AP. Full article
Show Figures

Graphical abstract

18 pages, 4668 KiB  
Article
Electrosprayed Core (Cellulose Acetate)–Shell (Polyvinylpyrrolidone) Nanoparticles for Smart Acetaminophen Delivery
by Lin Xu, Hua He, Yutong Du, Shengwei Zhang, Deng-Guang Yu and Ping Liu
Pharmaceutics 2023, 15(9), 2314; https://doi.org/10.3390/pharmaceutics15092314 - 13 Sep 2023
Cited by 35 | Viewed by 2743
Abstract
Smart drug delivery, through which the drug molecules are delivered according to the requests of human biological rhythms or by maximizing drug therapeutic effects, is highly desired in pharmaceutics. Many biomacromolecules have been exploited for this application in the past few decades, both [...] Read more.
Smart drug delivery, through which the drug molecules are delivered according to the requests of human biological rhythms or by maximizing drug therapeutic effects, is highly desired in pharmaceutics. Many biomacromolecules have been exploited for this application in the past few decades, both in industry and laboratories. Biphasic release, with an intentional pulsatile release and a following extended release stage, represents a typical smart drug delivery approach, which aims to provide fast therapeutic action and a long time period of effective blood drug concentration to the patients. In this study, based on the use of a well-known biomacromolecule, i.e., cellulose acetate (CA), as the drug (acetaminophen, ATP)-based sustained release carrier, a modified coaxial electrospraying process was developed to fabricate a new kind of core–shell nanoparticle. The nanoparticles were able to furnish a pulsatile release of ATP due to the shell polyvinylpyrrolidone (PVP). The time cost for a release of 30% was 0.32 h, whereas the core–shell particles were able to provide a 30.84-h sustained release of the 90% loaded ATP. The scanning electron microscope and transmission electron microscope results verified in terms of their round surface morphologies and the obvious core–shell double-chamber structures. ATP presented in both the core and shell sections in an amorphous state owing to its fine compatibility with CA and PVP. The controlled release mechanisms of ATP were suggested. The disclosed biomacromolecule-based process–structure–performance relationship can shed light on how to develop new sorts of advanced nano drug delivery systems. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

17 pages, 8687 KiB  
Article
Electrosprayed Stearic-Acid-Coated Ethylcellulose Microparticles for an Improved Sustained Release of Anticancer Drug
by Yuexin Ji, Hua Zhao, Hui Liu, Ping Zhao and Deng-Guang Yu
Gels 2023, 9(9), 700; https://doi.org/10.3390/gels9090700 - 29 Aug 2023
Cited by 71 | Viewed by 2758
Abstract
Sustained release is highly desired for “efficacious, safe and convenient” drug delivery, particularly for those anticancer drug molecules with toxicity. In this study, a modified coaxial electrospraying process was developed to coat a hydrophobic lipid, i.e., stearic acid (SA), on composites composed of [...] Read more.
Sustained release is highly desired for “efficacious, safe and convenient” drug delivery, particularly for those anticancer drug molecules with toxicity. In this study, a modified coaxial electrospraying process was developed to coat a hydrophobic lipid, i.e., stearic acid (SA), on composites composed of the anticancer drug tamoxifen citrate (TC) and insoluble polymeric matrix ethylcellulose (EC). Compared with the electrosprayed TC-EC composite microparticles M1, the electrosprayed SA-coated hybrid microparticles M2 were able to provide an improved TC sustained-release profile. The 30% and 90% loaded drug sustained-release time periods were extended to 3.21 h and 19.43 h for M2, respectively, which were significantly longer than those provided by M1 (0.88 h and 9.98 h, respectively). The morphology, inner structure, physical state, and compatibility of the components of the particles M1 and M2 were disclosed through SEM, TEM, XRD, and FTIR. Based on the analyses, the drug sustained-release mechanism of multiple factors co-acting for microparticles M2 is suggested, which include the reasonable selections and organizations of lipid and polymeric excipient, the blank SA shell drug loading, the regularly round shape, and also the high density. The reported protocols pioneered a brand-new manner for developing sustained drug delivery hybrids through a combination of insoluble cellulose gels and lipid using modified coaxial electrospraying. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents)
Show Figures

Graphical abstract

12 pages, 2923 KiB  
Communication
Comparison of Alginate Mixtures as Wall Materials of Schizochytrium Oil Microcapsules Formed by Coaxial Electrospray
by Alejandra Arevalo-Gallegos, Sara P. Cuellar-Bermudez, Elda M. Melchor-Martinez, Hafiz M. N. Iqbal and Roberto Parra-Saldivar
Polymers 2023, 15(12), 2756; https://doi.org/10.3390/polym15122756 - 20 Jun 2023
Cited by 6 | Viewed by 2308
Abstract
This work evaluated maltodextrin/alginate and β-glucan/alginate mixtures in the food industry as wall materials for the microencapsulation of Schizochytrium sp. oil, an important source of the omega-3 fatty acid DHA (docosahexaenoic acid). Results showed that both mixtures display a shear-thinning behavior, although the [...] Read more.
This work evaluated maltodextrin/alginate and β-glucan/alginate mixtures in the food industry as wall materials for the microencapsulation of Schizochytrium sp. oil, an important source of the omega-3 fatty acid DHA (docosahexaenoic acid). Results showed that both mixtures display a shear-thinning behavior, although the viscosity is higher in β-glucan/alginate mixtures than in maltodextrin/alginate. Scanning electron microscopy was used to assess the morphology of the microcapsules, which appeared more homogeneous for maltodextrin/alginate. In addition, oil-encapsulation efficiency was higher in maltodextrin/alginate mixtures (90%) than in β-glucan/alginate mixtures (80%). Finally, evaluating the microcapsules’ stability by FTIR when exposed to high temperature (80 °C) showed that maltodextrin/alginate microcapsules were not degraded contrary to the β-glucan/alginate microcapsules. Thus, although high oil-encapsulation efficiency was obtained with both mixtures, the microcapsules’ morphology and prolonged stability suggest that maltodextrin/alginate is a suitable wall material for microencapsulation of Schizochytrium sp. oil. Full article
(This article belongs to the Special Issue Polymeric Materials for Applications in the Food Industry)
Show Figures

Figure 1

30 pages, 1776 KiB  
Review
Encapsulation of Bioactive Peptides by Spray-Drying and Electrospraying
by Carmen Berraquero-García, Raúl Pérez-Gálvez, F. Javier Espejo-Carpio, Antonio Guadix, Emilia M. Guadix and Pedro J. García-Moreno
Foods 2023, 12(10), 2005; https://doi.org/10.3390/foods12102005 - 15 May 2023
Cited by 35 | Viewed by 5821
Abstract
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used [...] Read more.
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used to stabilize functional ingredients, helping to maintain their activity after processing, storage, and digestion, thus improving their bioaccessibility. Monoaxial spray-drying and electrospraying are common and economical techniques used for the encapsulation of nutrients and bioactive compounds in both the pharmaceutical and food industries. Although less studied, the coaxial configuration of both techniques could potentially improve the stabilization of protein-based bioactives via the formation of shell–core structures. This article reviews the application of these techniques, both monoaxial and coaxial configurations, for the encapsulation of bioactive peptides and protein hydrolysates, focusing on the factors affecting the properties of the encapsulates, such as the formulation of the feed solution, selection of carrier and solvent, as well as the processing conditions used. Furthermore, this review covers the release, retention of bioactivity, and stability of peptide-loaded encapsulates after processing and digestion. Full article
Show Figures

Figure 1

14 pages, 8676 KiB  
Article
Biocompatibility and Antibacterial Effect of Ginger Fraction Loaded PLGA Microspheres Fabricated by Coaxial Electrospray
by Jung-Eun Park, Yu-Kyoung Kim, Seo-Young Kim, Ji-Bong Choi, Tae-Sung Bae, Yong-Seok Jang and Min-Ho Lee
Materials 2023, 16(5), 1885; https://doi.org/10.3390/ma16051885 - 24 Feb 2023
Cited by 9 | Viewed by 2395
Abstract
Various poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with the ginger fraction were fabricated by controlling the electrospray parameters and their biocompatibility and antibacterial activity were identified in this study. The morphology of the microspheres was observed using scanning electron microscopy. The core-shell structures of [...] Read more.
Various poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with the ginger fraction were fabricated by controlling the electrospray parameters and their biocompatibility and antibacterial activity were identified in this study. The morphology of the microspheres was observed using scanning electron microscopy. The core-shell structures of the microparticles and the presence of ginger fraction in the microspheres were confirmed by fluorescence analysis using a confocal laser scanning microscopy system. In addition, the biocompatibility and antibacterial activity of PLGA microspheres loaded with ginger fraction were evaluated through a cytotoxicity test using osteoblast MC3T3-E1 cells and an antibacterial test using Streptococcus mutans and Streptococcus sanguinis, respectively. The optimum PLGA microspheres loaded with ginger fraction were fabricated under electrospray operational conditions with 3% PLGA concentration in solution, an applied voltage of 15.5 kV, a flow rate of 15 µL/min in the shell nozzle, and 3 µL/min in the core nozzle. The effectual antibacterial effect and enhanced biocompatibility were identified when a 3% ginger fraction in PLGA microspheres was loaded. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

18 pages, 2965 KiB  
Article
Comparative Study on the Oxidative Stability of Encapsulated Fish Oil by Monoaxial or Coaxial Electrospraying and Spray-Drying
by Nor E. Rahmani-Manglano, Emilia M. Guadix, Charlotte Jacobsen and Pedro J. García-Moreno
Antioxidants 2023, 12(2), 266; https://doi.org/10.3390/antiox12020266 - 24 Jan 2023
Cited by 18 | Viewed by 3873
Abstract
The impact of the encapsulation technology on the oxidative stability of fish-oil-loaded capsules was investigated. The capsules (ca. 13 wt% oil load) were produced via monoaxial or coaxial electrospraying and spray-drying using low molecular weight carbohydrates as encapsulating agents (e.g., glucose syrup or [...] Read more.
The impact of the encapsulation technology on the oxidative stability of fish-oil-loaded capsules was investigated. The capsules (ca. 13 wt% oil load) were produced via monoaxial or coaxial electrospraying and spray-drying using low molecular weight carbohydrates as encapsulating agents (e.g., glucose syrup or maltodextrin). The use of spray-drying technology resulted in larger capsules with higher encapsulation efficiency (EE > 84%), whilst the use of electrospraying produced encapsulates in the sub-micron scale with poorer retention properties (EE < 72%). The coaxially electrosprayed capsules had the lowest EE values (EE = 53–59%), resulting in the lowest oxidative stability, although the lipid oxidation was significantly reduced by increasing the content of pullulan in the shell solution. The emulsion-based encapsulates (spray-dried and monoaxially electrosprayed capsules) presented high oxidative stability during storage, as confirmed by the low concentration of selected volatiles (e.g., (E,E)-2,4-heptadienal). Nonetheless, the monoaxially electrosprayed capsules were the most oxidized after production due to the emulsification process and the longer processing time. Full article
(This article belongs to the Collection Advances in Antioxidant Ingredients from Natural Products)
Show Figures

Graphical abstract

15 pages, 2400 KiB  
Article
Developing Core/Shell Capsules Based on Hydroxypropyl Methylcellulose and Gelatin through Electrodynamic Atomization for Betalain Encapsulation
by Carol López de Dicastillo, Eliezer Velásquez, Adrián Rojas, Luan Garrido, María Carolina Moreno, Abel Guarda and María José Galotto
Polymers 2023, 15(2), 361; https://doi.org/10.3390/polym15020361 - 10 Jan 2023
Cited by 7 | Viewed by 4167
Abstract
Betalains are bioactive compounds with remarkable functional and nutritional activities for health and food preservation and attractiveness. Nevertheless, they are highly sensitive to external factors, such as oxygen presence, light, and high temperatures. Therefore, the search for new structures, polymeric matrices, and efficient [...] Read more.
Betalains are bioactive compounds with remarkable functional and nutritional activities for health and food preservation and attractiveness. Nevertheless, they are highly sensitive to external factors, such as oxygen presence, light, and high temperatures. Therefore, the search for new structures, polymeric matrices, and efficient methods of encapsulation of these compounds is of great interest to increase their addition to food products. In this work, betalains were extracted from red beetroot. Betacyanin and betaxanthin contents were quantified. Subsequently, these compounds were successfully encapsulated into the core of coaxial electrosprayed capsules composed of hydroxypropyl methylcellulose (HPMC) and gelatin (G). The effect of incorporating the carbohydrate and the protein both in the core or shell structures was studied to elucidate the best composition for betalain protection. Morphological, optical, and structural properties were analyzed to understand the effect of the incorporation of the bioactive compounds in the morphology, color, and chemical interactions between components of resulting electrosprayed capsules. The results of the thermogravimetric and encapsulation efficiency analysis coincided that the incorporation of beetroot extract in G in the core and HPMC in the shell resulted in the structure with greater betalain protection. The effectiveness of the core/shell structure was confirmed for future food applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

72 pages, 10656 KiB  
Review
Electrospun Conducting Polymers: Approaches and Applications
by Mariana Acosta, Marvin D. Santiago and Jennifer A. Irvin
Materials 2022, 15(24), 8820; https://doi.org/10.3390/ma15248820 - 9 Dec 2022
Cited by 30 | Viewed by 5729
Abstract
Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, [...] Read more.
Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Application of Electroactive Polymers)
Show Figures

Figure 1

14 pages, 2830 KiB  
Article
Insights into Protective Effects of Different Synbiotic Microcapsules on the Survival of Lactiplantibacillus plantarum by Electrospraying
by Shu-Fang Li, Kun Feng, Ru-Meng Huang, Yun-Shan Wei and Hong Wu
Foods 2022, 11(23), 3872; https://doi.org/10.3390/foods11233872 - 30 Nov 2022
Cited by 5 | Viewed by 1902
Abstract
This study evaluated the protective effects of different synbiotic microcapsules on the viability of encapsulated Lactiplantibacillus plantarum GIM1.648 fabricated by electrospraying. The optimum amount of substrate for three synbiotic microcapsules separately containing fructooligosaccharide (FOS), fish oil, and the complex of both were 4% [...] Read more.
This study evaluated the protective effects of different synbiotic microcapsules on the viability of encapsulated Lactiplantibacillus plantarum GIM1.648 fabricated by electrospraying. The optimum amount of substrate for three synbiotic microcapsules separately containing fructooligosaccharide (FOS), fish oil, and the complex of both were 4% FOS (SPI-F-L-P), 20 μL fish oil (SPI-O-L-P) and the complex of 20 μL fish oil, and 2% FOS (SPI-O-F-L-P), respectively. The obtained synbiotic microcapsules had a better encapsulation efficiency (EE) and survival rate (SR) after in vitro digestion than microcapsules without the addition of substrate (SPI-L-P) and SPI-O-F-L-P presented the highest EE (95.9%) and SR (95.5%). When compared to SPI-L-P, the synbiotic microcapsules possessed a more compact structure as proved by the SEM observation and their cell viability were significantly improved in response to environmental stresses (heat treatment, freeze drying, and storage). The synbiotic microcapsules containing the complex of FOS and fish oil showed the best beneficial effect, followed by ones with fish oil and then FOS, suggesting the FOS and fish oil complex has more potential in application. Full article
(This article belongs to the Special Issue Application of Emerging Nonthermal Technologies in the Food Industry)
Show Figures

Graphical abstract

27 pages, 3282 KiB  
Review
A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed (Nigella sativa)
by Muhammad Abdul Rahim, Aurbab Shoukat, Waseem Khalid, Afaf Ejaz, Nizwa Itrat, Iqra Majeed, Hyrije Koraqi, Muhammad Imran, Mahr Un Nisa, Anum Nazir, Wafa S. Alansari, Areej A. Eskandrani, Ghalia Shamlan and Ammar AL-Farga
Foods 2022, 11(18), 2826; https://doi.org/10.3390/foods11182826 - 13 Sep 2022
Cited by 39 | Viewed by 13253
Abstract
The current review investigates the effects of black seed (Nigella sativa) on human health, which is also used to encapsulate and oxidative stable in different food products. In recent decades, many extraction methods, such as cold pressing, supercritical fluid extraction, Soxhlet [...] Read more.
The current review investigates the effects of black seed (Nigella sativa) on human health, which is also used to encapsulate and oxidative stable in different food products. In recent decades, many extraction methods, such as cold pressing, supercritical fluid extraction, Soxhlet extraction, hydro distillation (HD) method, microwave-assisted extraction (MAE), ultrasound-assisted extraction, steam distillation, and accelerated solvent extraction (ASE) have been used to extract the oils from black seeds under optimal conditions. Black seed oil contains essential fatty acids, in which the major fatty acids are linoleic, oleic, and palmitic acids. The oxidative stability of black seed oil is very low, due to various environmental conditions or factors (temperature and light) affecting the stability. The oxidative stability of black seed oil has been increased by using encapsulation methods, including nanoprecipitation, ultra-sonication, spray-drying, nanoprecipitation, electrohydrodynamic, atomization, freeze-drying, a electrospray technique, and coaxial electrospraying. Black seed, oil, microcapsules, and their components have been used in various food processing, pharmaceutical, nutraceutical, and cosmetics industries as functional ingredients for multiple purposes. Black seed and oil contain thymoquinone as a major component, which has anti-oxidant, -diabetic, -inflammatory, -cancer, -viral, and -microbial properties, due to its phenolic compounds. Many clinical and experimental studies have indicated that the black seed and their by-products can be used to reduce the risk of cardiovascular diseases, chronic cancer, diabetes, oxidative stress, polycystic ovary syndrome, metabolic disorders, hypertension, asthma, and skin disorders. In this review, we are focusing on black seed oil composition and increasing the stability using different encapsulation methods. It is used in various food products to increase the human nutrition and health properties. Full article
Show Figures

Figure 1

Back to TopTop