Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = co-ultraPEALut

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1071 KiB  
Article
Co-ultraPEALut in Subjective Cognitive Impairment Following SARS-CoV-2 Infection: An Exploratory Retrospective Study
by Valentina Cenacchi, Giovanni Furlanis, Alina Menichelli, Alberta Lunardelli, Valentina Pesavento and Paolo Manganotti
Brain Sci. 2024, 14(3), 293; https://doi.org/10.3390/brainsci14030293 - 20 Mar 2024
Cited by 7 | Viewed by 2369
Abstract
Neurological involvement following coronavirus disease 19 (COVID-19) is thought to have a neuroinflammatory etiology. Co-ultraPEALut (an anti-inflammatory molecule) and luteolin (an anti-oxidant) have shown promising results as neuroinflammation antagonists. The aim of this study was to describe cognitive impairment in patients with post-COVID-19 [...] Read more.
Neurological involvement following coronavirus disease 19 (COVID-19) is thought to have a neuroinflammatory etiology. Co-ultraPEALut (an anti-inflammatory molecule) and luteolin (an anti-oxidant) have shown promising results as neuroinflammation antagonists. The aim of this study was to describe cognitive impairment in patients with post-COVID-19 treated with co-ultraPEALut. The Montreal Cognitive Assessment (MoCA), the Prospective–Retrospective Memory Questionnaire (PRMQ), the Fatigue Severity Scale (FSS), and a subjective assessment were administered at baseline and after 10 months. Patients treated with co-ultraPEALut were retrospectively compared with controls. Twenty-six patients treated with co-ultraPEALut showed a significant improvement in PRMQ (T0: 51.94 ± 10.55, T1: 39.67 ± 13.02, p < 0.00001) and MoCA raw score (T0: 25.76 ± 2.3, T1: 27.2 ± 2, p 0.0260); the MoCA-adjusted score and the FSS questionnaires also showed an improvement, even though it was not statistically significant; and 80.77% of patients reported a subjective improvement. In the control subjects (n = 15), the improvement was not as pronounced (PRMQ T0: 45.77 ± 13.47, T1: 42.33 ± 16.86, p 0.2051; FSS T0: 4.95 ± 1.57, T1: 4.06 ± 1.47, p 0.1352). Patients treated with co-ultraPEALut and corticosteroids were not statistically different from those treated with co-ultraPEALut alone. Neuro-post-COVID-19 patients treated with co-ultraPEALut scored better than controls in MoCA and PRMQ questionnaires after 10 months: this may support the importance of neuroinflammation modulation for neuro-long-COVID-19. Full article
(This article belongs to the Special Issue Impact of COVID-19 on the Brain and Cognition)
Show Figures

Figure 1

12 pages, 1394 KiB  
Review
Efficacy of Palmitoylethanolamide and Luteolin Association on Post-Covid Olfactory Dysfunction: A Systematic Review and Meta-Analysis of Clinical Studies
by Anna Paola Capra, Alessio Ardizzone, Lelio Crupi, Fabrizio Calapai, Michela Campolo, Salvatore Cuzzocrea and Emanuela Esposito
Biomedicines 2023, 11(8), 2189; https://doi.org/10.3390/biomedicines11082189 - 3 Aug 2023
Cited by 14 | Viewed by 4095
Abstract
Post-Covid Olfactory Dysfunction (PCOD) is characterized by olfactory abnormalities, hyposmia, and anosmia, which are among the most often enduring symptoms in individuals who have recovered from SARS-CoV-2 infection. This disorder has been reported to persist in subsets of patients well after 12 months [...] Read more.
Post-Covid Olfactory Dysfunction (PCOD) is characterized by olfactory abnormalities, hyposmia, and anosmia, which are among the most often enduring symptoms in individuals who have recovered from SARS-CoV-2 infection. This disorder has been reported to persist in subsets of patients well after 12 months following infection, significantly affecting their quality of life. Despite the high prevalence of PCOD among patients who suffered from SARS-CoV-2 infection, specific therapeutic strategies are still limited. Among these, emerging evidence seems to indicate the administration of CoUltraPEALut, a combination of micronized Palmitoylethanolamide (PEA), an endogenous fatty acid amide, and Luteolin, a natural antioxidant flavonoid, as a viable therapy, especially when given as an adjuvant to olfactory training. Based on the above, a systematic review and a meta-analysis of the literature were conducted, with the aim of evaluating the efficacy of CoUltraPEALut as an addition to olfactory training (OT), in treating PCOD symptoms. Pubmed (MEDLINE), Embase (OVID), and Web of Science scientific databases were screened from the inception until 31 May 2023, and a total of 407 articles were recovered; only five of these studies (441 total patients between treated and control groups) were included in the systematic review. CoUltraPEALut demonstrated significant efficacy in the overall recovery of the olfactory function, compared to the conventional therapy, suggesting that it could represent a possible future adjuvant treatment for PCOD. Full article
Show Figures

Figure 1

16 pages, 1196 KiB  
Review
Synaptic Effects of Palmitoylethanolamide in Neurodegenerative Disorders
by Martina Assogna, Francesco Di Lorenzo, Alessandro Martorana and Giacomo Koch
Biomolecules 2022, 12(8), 1161; https://doi.org/10.3390/biom12081161 - 22 Aug 2022
Cited by 17 | Viewed by 4977
Abstract
Increasing evidence strongly supports the key role of neuroinflammation in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Neuroinflammation may alter synaptic transmission contributing to the progression of neurodegeneration, as largely documented in animal models and [...] Read more.
Increasing evidence strongly supports the key role of neuroinflammation in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Neuroinflammation may alter synaptic transmission contributing to the progression of neurodegeneration, as largely documented in animal models and in patients’ studies. In the last few years, palmitoylethanolamide (PEA), an endogenous lipid mediator, and its new composite, which is a formulation constituted of PEA and the well-recognized antioxidant flavonoid luteolin (Lut) subjected to an ultra-micronization process (co-ultraPEALut), has been identified as a potential therapeutic agent in different disorders by exerting potential beneficial effects on neurodegeneration and neuroinflammation by modulating synaptic transmission. In this review, we will show the potential therapeutic effects of PEA in animal models and in patients affected by neurodegenerative disorders. Full article
Show Figures

Figure 1

18 pages, 3654 KiB  
Article
Co-Ultramicronized Palmitoylethanolamide/Luteolin Restores Oligodendrocyte Homeostasis via Peroxisome Proliferator-Activated Receptor-α in an In Vitro Model of Alzheimer’s Disease
by Roberta Facchinetti, Marta Valenza, Chiara Gomiero, Giulia Federica Mancini, Luca Steardo, Patrizia Campolongo and Caterina Scuderi
Biomedicines 2022, 10(6), 1236; https://doi.org/10.3390/biomedicines10061236 - 26 May 2022
Cited by 13 | Viewed by 3208
Abstract
Oligodendrocytes are cells fundamental for brain functions as they form the myelin sheath and feed axons. They perform these critical functions thanks to the cooperation with other glial cells, mainly astrocytes. The astrocyte/oligodendrocyte crosstalk needs numerous mediators and receptors, such as peroxisome proliferator-activated [...] Read more.
Oligodendrocytes are cells fundamental for brain functions as they form the myelin sheath and feed axons. They perform these critical functions thanks to the cooperation with other glial cells, mainly astrocytes. The astrocyte/oligodendrocyte crosstalk needs numerous mediators and receptors, such as peroxisome proliferator-activated receptors (PPARs). PPAR agonists promote oligodendrocyte precursor cells (OPCs) maturation in myelinating oligodendrocytes. In the Alzheimer’s disease brain, deposition of beta-amyloid (Aβ) has been linked to several alterations, including astrogliosis and changes in OPCs maturation. However, very little is known about the molecular mechanisms. Here, we investigated for the first time the maturation of OPCs co-cultured with astrocytes in an in vitro model of Aβ1–42 toxicity. We also tested the potential beneficial effect of the anti-inflammatory and neuroprotective composite palmitoylethanolamide and luteolin (co-ultra PEALut), which is known to engage the isoform alfa of the PPARs. Our results show that Aβ1–42 triggers astrocyte reactivity and inflammation and reduces the levels of growth factors important for OPCs maturation. Oligodendrocytes indeed show low cell surface area and few arborizations. Co-ultra PEALut counteracts the Aβ1–42-induced inflammation and astrocyte reactivity preserving the morphology of co-cultured oligodendrocytes through a mechanism that in some cases involves PPAR-α. This is the first evidence of the negative effects exerted by Aβ1–42 on astrocyte/oligodendrocyte crosstalk and discloses a never-explored co-ultra PEALut ability in restoring oligodendrocyte homeostasis. Full article
(This article belongs to the Special Issue Molecular Determinants of Neurodegenerative Diseases)
Show Figures

Figure 1

26 pages, 24040 KiB  
Article
Co-Ultra PEALut Enhances Endogenous Repair Response Following Moderate Traumatic Brain Injury
by Michela Campolo, Rosalia Crupi, Marika Cordaro, Salvatore Massimo Cardali, Alessio Ardizzone, Giovanna Casili, Sarah Adriana Scuderi, Rosalba Siracusa, Emanuela Esposito, Alfredo Conti and Salvatore Cuzzocrea
Int. J. Mol. Sci. 2021, 22(16), 8717; https://doi.org/10.3390/ijms22168717 - 13 Aug 2021
Cited by 25 | Viewed by 3877
Abstract
This study aimed to assess the neuro-regenerative properties of co-ultramicronized PEALut (Glialia®), composed of palmitoylethanolamide (PEA) and the flavonoid luteolin (Lut), in an in vivo model of traumatic brain injury (TBI) and patients affected by moderate TBI. An increase in neurogenesis [...] Read more.
This study aimed to assess the neuro-regenerative properties of co-ultramicronized PEALut (Glialia®), composed of palmitoylethanolamide (PEA) and the flavonoid luteolin (Lut), in an in vivo model of traumatic brain injury (TBI) and patients affected by moderate TBI. An increase in neurogenesis was seen in the mice at 72 h and 7 d after TBI. The co-ultra PEALut treatment helped the neuronal reconstitution process to restore the basal level of both novel and mature neurons; moreover, it induced a significant upregulation of the neurotrophic factors, which ultimately led to progress in terms of memory recall during behavioral testing. Moreover, our preliminary findings in a clinical trial suggested that Glialia® treatment facilitated neural recovery on working memory. Thus, co-ultra PEALut (Glialia®) could represent a valuable therapeutic agent for intensifying the endogenous repair response in order to better treat TBI. Full article
(This article belongs to the Special Issue New Frontiers of Traumatic Brain Injury Management)
Show Figures

Figure 1

17 pages, 12315 KiB  
Article
Looking for a Treatment for the Early Stage of Alzheimer’s Disease: Preclinical Evidence with Co-Ultramicronized Palmitoylethanolamide and Luteolin
by Roberta Facchinetti, Marta Valenza, Maria Rosanna Bronzuoli, Giorgia Menegoni, Patrizia Ratano, Luca Steardo, Patrizia Campolongo and Caterina Scuderi
Int. J. Mol. Sci. 2020, 21(11), 3802; https://doi.org/10.3390/ijms21113802 - 27 May 2020
Cited by 25 | Viewed by 4154
Abstract
Background: At the earliest stage of Alzheimer’s disease (AD), although patients are still asymptomatic, cerebral alterations have already been triggered. In addition to beta amyloid (Aβ) accumulation, both glial alterations and neuroinflammation have been documented at this stage. Starting treatment at this prodromal [...] Read more.
Background: At the earliest stage of Alzheimer’s disease (AD), although patients are still asymptomatic, cerebral alterations have already been triggered. In addition to beta amyloid (Aβ) accumulation, both glial alterations and neuroinflammation have been documented at this stage. Starting treatment at this prodromal AD stage could be a valuable therapeutic strategy. AD requires long-term care; therefore, only compounds with a high safety profile can be used, such as the new formulation containing palmitoylethanolamide and luteolin (co-ultra PEALut) already approved for human use. Therefore, we investigated it in an in vivo pharmacological study that focused on the prodromal stage of AD. Methods: We tested the anti-inflammatory and neuroprotective effects of co-ultra PEALut (5 mg/Kg) administered for 14 days in rats that received once, 5 µg Aβ(1–42) into the hippocampus. Results: Glial activation and elevated levels of proinflammatory mediators were observed in Aβ-infused rats. Early administration of co-ultra PEALut prevented the Aβ-induced astrogliosis and microgliosis, the upregulation in gene expression of pro-inflammatory cytokines and enzymes, as well as the reduction of mRNA levels BDNF and GDNF. Our findings also highlight an important neuroprotective effect of co-ultra PEALut treatment, which promoted neuronal survival. Conclusions: Our results reveal the presence of cellular and molecular modifications in the prodromal stage of AD. Moreover, the data presented here demonstrate the ability of co-ultra PEALut to normalize such Aβ-induced alterations, suggesting it as a valuable therapeutic strategy. Full article
(This article belongs to the Special Issue Amides)
Show Figures

Figure 1

Back to TopTop