Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = clathrin independent endocytosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2520 KiB  
Review
Revisiting Pathogen Exploitation of Clathrin-Independent Endocytosis: Mechanisms and Implications
by Oliver Goldmann and Eva Medina
Cells 2025, 14(10), 731; https://doi.org/10.3390/cells14100731 - 16 May 2025
Cited by 1 | Viewed by 812
Abstract
Endocytosis is a specialized transport mechanism in which the cell membrane folds inward to enclose large molecules, fluids, or particles, forming vesicles that are transported within the cell. It plays a crucial role in nutrient uptake, immune responses, and cellular communication. However, many [...] Read more.
Endocytosis is a specialized transport mechanism in which the cell membrane folds inward to enclose large molecules, fluids, or particles, forming vesicles that are transported within the cell. It plays a crucial role in nutrient uptake, immune responses, and cellular communication. However, many pathogens exploit the endocytic pathway to invade and survive within host cells, allowing them to evade the immune system and establish infection. Endocytosis can be classified as clathrin-mediated (CME) or clathrin-independent (CIE), based on the mechanism of vesicle formation. Unlike CME, which involves the formation of clathrin-coated vesicles that bud from the plasma membrane, CIE does not rely on clathrin-coated vesicles. Instead, other mechanisms facilitate membrane invagination and vesicle formation. CIE encompasses a variety of pathways, including caveolin-mediated, Arf6-dependent, and flotillin-dependent pathways. In this review, we discuss key features of CIE pathways, including cargo selection, vesicle formation, routes taken by internalized cargo, and the regulatory mechanisms governing CIE. Many viruses and bacteria hijack host cell CIE mechanisms to facilitate intracellular trafficking and persistence. We also revisit the exploitation of CIE by bacterial and viral pathogens, highlighting recent discoveries in entry mechanisms, intracellular fate, and host-pathogen interactions. Understanding how pathogens manipulate CIE in host cells can inform the development of novel antimicrobial and immunomodulatory interventions, offering new avenues for disease prevention and treatment. Full article
Show Figures

Figure 1

15 pages, 4617 KiB  
Article
Human Coronavirus 229E Uses Clathrin-Mediated Endocytosis as a Route of Entry in Huh-7 Cells
by Sabina Andreu, Inés Ripa, José Antonio López-Guerrero and Raquel Bello-Morales
Biomolecules 2024, 14(10), 1232; https://doi.org/10.3390/biom14101232 - 29 Sep 2024
Viewed by 1634
Abstract
Human coronavirus 229E (HCoV-229E) is an endemic coronavirus responsible for approximately one-third of “common cold” cases. To infect target cells, HCoV-229E first binds to its receptor on the cell surface and then can follow different pathways, entering by direct fusion or by taking [...] Read more.
Human coronavirus 229E (HCoV-229E) is an endemic coronavirus responsible for approximately one-third of “common cold” cases. To infect target cells, HCoV-229E first binds to its receptor on the cell surface and then can follow different pathways, entering by direct fusion or by taking advantage of host cell mechanisms such as endocytosis. Based on the role of clathrin, the process can be classified into clathrin-dependent or -independent endocytosis. This study characterizes the role of clathrin-mediated endocytosis (CME) in HCoV-229E infection of the human hepatoma cell line Huh-7. Using specific CME inhibitory drugs, we demonstrated that blocking CME significantly reduces HCoV-229E infection. Additionally, CRISPR/Cas9-mediated knockout of the µ subunit of adaptor protein complex 2 (AP-2) further corroborated the role of CME, as KOs showed over a 50% reduction in viral infection. AP-2 plays an important role in clathrin recruitment and the maturation of clathrin-coated vesicles. Our study also confirmed that in Huh-7 cells, HCoV-229E requires endosomal acidification for successful entry, as viral entry decreased when treated with lysomotropic agents. Furthermore, the colocalization of HCoV-229E with early endosome antigen 1 (EEA-1), only present in early endosomes, suggested that the virus uses an endosomal route for entry. These findings highlight, for the first time, the role of CME in HCoV-229E infection and confirm previous data of the use of the endosomal route at a low pH in the experimental cell model Huh-7. Our results provide new insights into the mechanisms of entry of HCoV-229E and provide a new basis for the development of targeted antiviral therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Viral Infections)
Show Figures

Figure 1

32 pages, 5221 KiB  
Review
The Chemical Inhibitors of Endocytosis: From Mechanisms to Potential Clinical Applications
by Olga Klaudia Szewczyk-Roszczenko, Piotr Roszczenko, Anna Shmakova, Nataliya Finiuk, Serhii Holota, Roman Lesyk, Anna Bielawska, Yegor Vassetzky and Krzysztof Bielawski
Cells 2023, 12(18), 2312; https://doi.org/10.3390/cells12182312 - 19 Sep 2023
Cited by 30 | Viewed by 10233
Abstract
Endocytosis is one of the major ways cells communicate with their environment. This process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transformation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this process, and discuss potential [...] Read more.
Endocytosis is one of the major ways cells communicate with their environment. This process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transformation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this process, and discuss potential clinical applications of the endocytosis inhibitors. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Graphical abstract

12 pages, 2277 KiB  
Article
Confocal Microscopy Investigations of Biopolymeric PLGA Nanoparticle Uptake in Arabidopsis thaliana L. Cultured Cells and Plantlet Roots
by Giulia De Angelis, Camilla Badiali, Laura Chronopoulou, Cleofe Palocci and Gabriella Pasqua
Plants 2023, 12(13), 2397; https://doi.org/10.3390/plants12132397 - 21 Jun 2023
Cited by 8 | Viewed by 2729
Abstract
To date, most endocytosis studies in plant cells have focused on clathrin-dependent endocytosis, while limited evidence is available on clathrin-independent pathways. Since dynamin a is a key protein both in clathrin-mediated endocytosis and in clathrin-independent endocytic processes, this study investigated its role in [...] Read more.
To date, most endocytosis studies in plant cells have focused on clathrin-dependent endocytosis, while limited evidence is available on clathrin-independent pathways. Since dynamin a is a key protein both in clathrin-mediated endocytosis and in clathrin-independent endocytic processes, this study investigated its role in the uptake of poly-(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs). The experiments were performed on cultured cells and roots of Arabidopsis thaliana. Dynasore was used to inhibit the activity of dynamin-like proteins to investigate whether PLGA NPs enter plant cells through a dynamin-like-dependent or dynamin-like-independent endocytic pathway. Observations were performed by confocal microscopy using a fluorescent probe, coumarin 6, loaded in PLGA NPs. The results showed that both cells and roots of A. thaliana rapidly take up PLGA NPs. Dynasore was administered at different concentrations and exposure times in order to identify the effective ones for inhibitory activity. Treatments with dynasore did not prevent the NPs uptake, as revealed by the presence of fluorescence emission detected in the cytoplasm. At the highest concentration and the longest exposure time to dynasore, the fluorescence of NPs was not visible due to cell death. Thus, the results suggest that, because the NPs’ uptake is unaffected by dynasore exposure, NPs can enter cells and roots by following a dynamin-like-independent endocytic pathway. Full article
(This article belongs to the Special Issue Microscopy Techniques in Plant Studies)
Show Figures

Figure 1

18 pages, 40486 KiB  
Article
KDEL Receptor Trafficking to the Plasma Membrane Is Regulated by ACBD3 and Rab4A-GTP
by Chuanting Tan, Yulei Du, Lianhui Zhu, Shuaiyang Jing, Jingkai Gao, Yi Qian, Xihua Yue and Intaek Lee
Cells 2023, 12(7), 1079; https://doi.org/10.3390/cells12071079 - 4 Apr 2023
Viewed by 2992
Abstract
KDEL receptor-1 maintains homeostasis in the early secretory pathway by capturing and retrieving ER chaperones to the ER during heavy secretory activity. Unexpectedly, a fraction of the receptor is also known to reside in the plasma membrane (PM), although it is largely unknown [...] Read more.
KDEL receptor-1 maintains homeostasis in the early secretory pathway by capturing and retrieving ER chaperones to the ER during heavy secretory activity. Unexpectedly, a fraction of the receptor is also known to reside in the plasma membrane (PM), although it is largely unknown exactly how the KDEL receptor gets exported from the Golgi and travels to the PM. We have previously shown that a Golgi scaffolding protein (ACBD3) facilitates KDEL receptor localization at the Golgi via the regulating cargo wave-induced cAMP/PKA-dependent signaling pathway. Upon endocytosis, surface-expressed KDEL receptor undergoes highly complex itineraries through the Golgi and the endo-lysosomal compartments, where the endocytosed receptor utilizes Rab14A- and Rab11A-positive recycling endosomes and clathrin-decorated tubulovesicular carriers. In this study, we sought to investigate the mechanism through which the KDEL receptor gets exported from the Golgi en route to the PM. We report here that ACBD3 depletion results in greatly increased trafficking of KDEL receptor to the PM via Rab4A-positive tubular carriers emanating from the Golgi. Expression of constitutively activated Rab4A mutant (Q72L) increases the surface expression of KDEL receptor up to 2~3-fold, whereas Rab4A knockdown or the expression of GDP-locked Rab4A mutant (S27N) inhibits KDEL receptor targeting of the PM. Importantly, KDELR trafficking from the Golgi to the PM is independent of PKA- and Src kinase-mediated mechanisms. Taken together, these results reveal that ACBD3 and Rab4A play a key role in regulating KDEL receptor trafficking to the cell surface. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

19 pages, 9438 KiB  
Article
Uptake of Tropheryma whipplei by Intestinal Epithelia
by Julian Friebel, Katina Schinnerling, Kathleen Weigt, Claudia Heldt, Anja Fromm, Christian Bojarski, Britta Siegmund, Hans-Jörg Epple, Judith Kikhney, Annette Moter, Thomas Schneider, Jörg D. Schulzke, Verena Moos and Michael Schumann
Int. J. Mol. Sci. 2023, 24(7), 6197; https://doi.org/10.3390/ijms24076197 - 24 Mar 2023
Cited by 1 | Viewed by 3151
Abstract
Background: Tropheryma whipplei (TW) can cause different pathologies, e.g., Whipple’s disease and transient gastroenteritis. The mechanism by which the bacteria pass the intestinal epithelial barrier, and the mechanism of TW-induced gastroenteritis are currently unknown. Methods: Using ex vivo disease models [...] Read more.
Background: Tropheryma whipplei (TW) can cause different pathologies, e.g., Whipple’s disease and transient gastroenteritis. The mechanism by which the bacteria pass the intestinal epithelial barrier, and the mechanism of TW-induced gastroenteritis are currently unknown. Methods: Using ex vivo disease models comprising human duodenal mucosa exposed to TW in Ussing chambers, various intestinal epithelial cell (IEC) cultures exposed to TW and a macrophage/IEC coculture model served to characterize endocytic uptake mechanisms and barrier function. Results: TW exposed ex vivo to human small intestinal mucosae is capable of autonomously entering IECs, thereby invading the mucosa. Using dominant-negative mutants, TW uptake was shown to be dynamin- and caveolin-dependent but independent of clathrin-mediated endocytosis. Complementary inhibitor experiments suggested a role for the activation of the Ras/Rac1 pathway and actin polymerization. TW-invaded IECs underwent apoptosis, thereby causing an epithelial barrier defect, and were subsequently subject to phagocytosis by macrophages. Conclusions: TW enters epithelia via an actin-, dynamin-, caveolin-, and Ras-Rac1-dependent endocytosis mechanism and consecutively causes IEC apoptosis primarily in IECs invaded by multiple TW bacteria. This results in a barrier leak. Moreover, we propose that TW-packed IECs can be subject to phagocytic uptake by macrophages, thereby opening a potential entry point of TW into intestinal macrophages. Full article
(This article belongs to the Special Issue Biological Barriers)
Show Figures

Figure 1

23 pages, 1753 KiB  
Review
Insights of Endocytosis Signaling in Health and Disease
by Chandramani Pathak, Foram U. Vaidya, Bhargav N. Waghela, Pradip Kumar Jaiswara, Vishal Kumar Gupta, Ajay Kumar, Barani Kumar Rajendran and Kishu Ranjan
Int. J. Mol. Sci. 2023, 24(3), 2971; https://doi.org/10.3390/ijms24032971 - 3 Feb 2023
Cited by 35 | Viewed by 10857
Abstract
Endocytosis in mammalian cells is a fundamental cellular machinery that regulates vital physiological processes, such as the absorption of metabolites, release of neurotransmitters, uptake of hormone cellular defense, and delivery of biomolecules across the plasma membrane. A remarkable characteristic of the endocytic machinery [...] Read more.
Endocytosis in mammalian cells is a fundamental cellular machinery that regulates vital physiological processes, such as the absorption of metabolites, release of neurotransmitters, uptake of hormone cellular defense, and delivery of biomolecules across the plasma membrane. A remarkable characteristic of the endocytic machinery is the sequential assembly of the complex proteins at the plasma membrane, followed by internalization and fusion of various biomolecules to different cellular compartments. In all eukaryotic cells, functional characterization of endocytic pathways is based on dynamics of the protein complex and signal transduction modules. To coordinate the assembly and functions of the numerous parts of the endocytic machinery, the endocytic proteins interact significantly within and between the modules. Clathrin-dependent and -independent endocytosis, caveolar pathway, and receptor mediated endocytosis have been attributed to a greater variety of physiological and pathophysiological roles such as, autophagy, metabolism, cell division, apoptosis, cellular defense, and intestinal permeabilization. Notably, any defect or alteration in the endocytic machinery results in the development of pathological consequences associated with human diseases such as cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. In this review, an in-depth endeavor has been made to illustrate the process of endocytosis, and associated mechanisms describing pathological manifestation associated with dysregulated endocytosis machinery. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 2503 KiB  
Article
Nanomaterial Endocytosis: Quantification of Adsorption and Ingestion Mechanisms
by Abhinav Sannidhi, Chen Zhou, Young Suk Choi, Allan E. David, Paul W. Todd and Thomas R. Hanley
Magnetochemistry 2023, 9(2), 37; https://doi.org/10.3390/magnetochemistry9020037 - 19 Jan 2023
Cited by 4 | Viewed by 2482
Abstract
The widespread use of nanomaterials in vaccines, therapeutics, and industrial applications creates an increasing demand for understanding their ingestion by living cells. Researchers in the field have called for a more robust understanding of physical/chemical particle–cell interactions and a means to determine the [...] Read more.
The widespread use of nanomaterials in vaccines, therapeutics, and industrial applications creates an increasing demand for understanding their ingestion by living cells. Researchers in the field have called for a more robust understanding of physical/chemical particle–cell interactions and a means to determine the particles ingested per cell. Using superparamagnetic nanobeads, we measured the beads per cell and quantified the kinetics of the receptor-independent endocytosis of particles having seven surface chemistries. Poly(ethylene glycol) (PEG)-coated nanoparticles were ingested less effectively by cultured Chinese hamster ovary (CHO-K1) cells and more effectively by aminated nanoparticles than starch-coated particles. The cells ingested 2 to 4 × 105 of the most attractive particles. The interplay between Van der Waals and coulombic potentials was quantified on the basis of Derjaguin–Landau–Verwey–Overbeek (DLVO) theory modified to include hydration repulsion using physical parameters of the seven surface chemistries. Using dose–response curves for inhibitors of clathrin- or caveolae-dependent ingestion, we quantified how particle surface chemistry determines which endocytic pathway is used by the cell. Such characterization can be useful in predicting nanomaterial uptake in medical and toxicological applications and in the selection of particle surface chemistries for receptor-dependent endocytosis. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles for Biomedicine 2022)
Show Figures

Graphical abstract

26 pages, 3176 KiB  
Review
PICALM and Alzheimer’s Disease: An Update and Perspectives
by Kunie Ando, Siranjeevi Nagaraj, Fahri Küçükali, Marie-Ange de Fisenne, Andreea-Claudia Kosa, Emilie Doeraene, Lidia Lopez Gutierrez, Jean-Pierre Brion and Karelle Leroy
Cells 2022, 11(24), 3994; https://doi.org/10.3390/cells11243994 - 10 Dec 2022
Cited by 49 | Viewed by 6362
Abstract
Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects [...] Read more.
Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects of genetic variants of PICALM as AD-susceptibility loci have been confirmed by independent genetic studies in several distinct cohorts, there has been a number of in vitro and in vivo studies attempting to elucidate the underlying mechanism by which PICALM modulates AD risk. While differential modulation of APP processing and Aβ transcytosis by PICALM has been reported, significant effects of PICALM modulation of tau pathology progression have also been evidenced in Alzheimer’s disease models. In this review, we summarize the current knowledge about PICALM, its physiological functions, genetic variants, post-translational modifications and relevance to AD pathogenesis. Full article
(This article belongs to the Special Issue Neurodegenerative Diseases: Updates and Challenges)
Show Figures

Figure 1

13 pages, 11808 KiB  
Article
Salicylic Acid Regulates Root Gravitropic Growth via Clathrin-Independent Endocytic Trafficking of PIN2 Auxin Transporter in Arabidopsis thaliana
by Houjun Zhou, Haiman Ge, Jiahong Chen, Xueqin Li, Lei Yang, Hongxia Zhang and Yuan Wang
Int. J. Mol. Sci. 2022, 23(16), 9379; https://doi.org/10.3390/ijms23169379 - 19 Aug 2022
Cited by 8 | Viewed by 3297
Abstract
The phytohormone salicylic acid (SA) plays a crucial role in plant growth and development. However, the mechanism of high-concentration SA-affected gravitropic response in plant root growth and root hair development is still largely unclear. In this study, wild-type, pin2 mutant and various transgenic [...] Read more.
The phytohormone salicylic acid (SA) plays a crucial role in plant growth and development. However, the mechanism of high-concentration SA-affected gravitropic response in plant root growth and root hair development is still largely unclear. In this study, wild-type, pin2 mutant and various transgenic fluorescence marker lines of Arabidopsis thaliana were investigated to understand how root growth is affected by high SA treatment under gravitropic stress conditions. We found that exogenous SA application inhibited gravitropic root growth and root hair development in a dose-dependent manner. Further analyses using DIRECT REPEAT5 (DR5)-GFP, auxin sensor DII-VENUS, auxin efflux transporter PIN2-GFP, trans-Golgi network/early endosome (TGN/EE) clathrin-light-chain 2 (CLC2)-mCherry and prevacuolar compartment (PVC) (Rha1)-mCherry transgenic marker lines demonstrated that high SA treatment severely affected auxin accumulation, root-specific PIN2 distribution and PIN2 gene transcription and promoted the vacuolar degradation of PIN2, possibly independent of clathrin-mediated endocytic protein trafficking. Our findings proposed a new underlying mechanism of SA-affected gravitropic root growth and root hair development via the regulation of PIN2 gene transcription and PIN2 protein endocytosis in plants. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 3045 KiB  
Article
Coaxial Synthesis of PEI-Based Nanocarriers of Encapsulated RNA-Therapeutics to Specifically Target Muscle Cells
by Raquel de la Hoz, Nazely Diban, María T. Berciano, Carlos San Emeterio, Ane Urtiaga, Miguel Lafarga, José C. Rodríguez-Rey and Olga Tapia
Biomolecules 2022, 12(8), 1012; https://doi.org/10.3390/biom12081012 - 22 Jul 2022
Cited by 10 | Viewed by 3746
Abstract
In this work, we performed a methodological comparative analysis to synthesize polyethyleneimine (PEI) nanoparticles using (i) conventional nanoprecipitation (NP), (ii) electrospraying (ES), and (iii) coaxial electrospraying (CA). The nanoparticles transported antisense oligonucleotides (ASOs), either encapsulated (CA nanocomplexes) or electrostatically bound externally (NP and [...] Read more.
In this work, we performed a methodological comparative analysis to synthesize polyethyleneimine (PEI) nanoparticles using (i) conventional nanoprecipitation (NP), (ii) electrospraying (ES), and (iii) coaxial electrospraying (CA). The nanoparticles transported antisense oligonucleotides (ASOs), either encapsulated (CA nanocomplexes) or electrostatically bound externally (NP and ES nanocomplexes). After synthesis, the PEI/ASO nanoconjugates were functionalized with a muscle-specific RNA aptamer. Using this combinatorial formulation methodology, we obtained nanocomplexes that were further used as nanocarriers for the delivery of RNA therapeutics (ASO), specifically into muscle cells. In particular, we performed a detailed confocal microscopy-based comparative study to analyze the overall transfection efficiency, the cell-to-cell homogeneity, and the mean fluorescence intensity per cell of micron-sized domains enriched with the nanocomplexes. Furthermore, using high-magnification electron microscopy, we were able to describe, in detail, the ultrastructural basis of the cellular uptake and intracellular trafficking of nanocomplexes by the clathrin-independent endocytic pathway. Our results are a clear demonstration that coaxial electrospraying is a promising methodology for the synthesis of therapeutic nanoparticle-based carriers. Some of the principal features that the nanoparticles synthesized by coaxial electrospraying exhibit are efficient RNA-based drug encapsulation, increased nanoparticle surface availability for aptamer functionalization, a high transfection efficiency, and hyperactivation of the endocytosis and early/late endosome route as the main intracellular uptake mechanism. Full article
(This article belongs to the Special Issue Biomolecules and Materials Based Approaches in Biomedical Field)
Show Figures

Figure 1

17 pages, 4940 KiB  
Article
Biodistribution and Cellular Internalization of Inactivated SARS-CoV-2 in Wild-Type Mice
by Anett Hudák, Gareth Morgan, Jaromir Bacovsky, Roland Patai, Tamás F. Polgár, Annamária Letoha, Aladar Pettko-Szandtner, Csaba Vizler, László Szilák and Tamás Letoha
Int. J. Mol. Sci. 2022, 23(14), 7609; https://doi.org/10.3390/ijms23147609 - 9 Jul 2022
Cited by 6 | Viewed by 5545
Abstract
Despite the growing list of identified SARS-CoV-2 receptors, the human angiotensin-converting enzyme 2 (ACE2) is still viewed as the main cell entry receptor mediating SARS-CoV-2 internalization. It has been reported that wild-type mice, like other rodent species of the Muridae family, cannot be [...] Read more.
Despite the growing list of identified SARS-CoV-2 receptors, the human angiotensin-converting enzyme 2 (ACE2) is still viewed as the main cell entry receptor mediating SARS-CoV-2 internalization. It has been reported that wild-type mice, like other rodent species of the Muridae family, cannot be infected with SARS-CoV-2 due to differences in their ACE2 receptors. On the other hand, the consensus heparin-binding motif of SARS-CoV-2’s spike protein, PRRAR, enables the attachment to rodent heparan sulfate proteoglycans (HSPGs), including syndecans, a transmembrane HSPG family with a well-established role in clathrin- and caveolin-independent endocytosis. As mammalian syndecans possess a relatively conserved structure, we analyzed the cellular uptake of inactivated SARS-CoV-2 particles in in vitro and in vivo mice models. Cellular studies revealed efficient uptake into murine cell lines with established syndecan-4 expression. After intravenous administration, inactivated SARS-CoV-2 was taken up by several organs in vivo and could also be detected in the brain. Internalized by various tissues, inactivated SARS-CoV-2 raised tissue TNF-α levels, especially in the heart, reflecting the onset of inflammation. Our studies on in vitro and in vivo mice models thus shed light on unknown details of SARS-CoV-2 internalization and help broaden the understanding of the molecular interactions of SARS-CoV-2. Full article
(This article belongs to the Special Issue Coronavirus Disease (COVID-19): Pathophysiology 2.0)
Show Figures

Figure 1

20 pages, 1536 KiB  
Article
Internalization of Polymeric Bacterial Peptidoglycan Occurs through Either Actin or Dynamin Dependent Pathways
by Narcis I. Popescu, Jackie Cochran, Elizabeth Duggan, Jędrzej Kluza, Robert Silasi and Kenneth Mark Coggeshall
Microorganisms 2022, 10(3), 552; https://doi.org/10.3390/microorganisms10030552 - 3 Mar 2022
Cited by 5 | Viewed by 2611
Abstract
Peptidoglycan (PGN), a polymeric glycan macromolecule, is a major constituent of the bacterial cell wall and a conserved pathogen-associated molecular pattern (PAMP) that triggers immune responses through cytosolic sensors. Immune cells encounter both PGN polymers and hydrolyzed muropeptides during infections, and primary human [...] Read more.
Peptidoglycan (PGN), a polymeric glycan macromolecule, is a major constituent of the bacterial cell wall and a conserved pathogen-associated molecular pattern (PAMP) that triggers immune responses through cytosolic sensors. Immune cells encounter both PGN polymers and hydrolyzed muropeptides during infections, and primary human innate immune cells respond better to polymeric PGN than the minimal bioactive subunit muramyl dipeptide (MDP). While MDP is internalized through macropinocytosis and/or clathrin-mediated endocytosis, the internalization of particulate polymeric PGN is unresolved. We show here that PGN macromolecules isolated from Bacillus anthracis display a broad range of sizes, making them amenable for multiple internalization pathways. Pharmacologic inhibition indicates that PGN primarily, but not exclusively, is internalized by actin-dependent endocytosis. An alternate clathrin-independent but dynamin dependent pathway supports 20–30% of PGN uptake. In primary monocytes, this alternate pathway does not require activities of RhoA, Cdc42 or Arf6 small GTPases. Selective inhibition of PGN uptake shows that phagolysosomal trafficking, processing and downstream immune responses are drastically affected by actin depolymerization, while dynamin inhibition has a smaller effect. Overall, we show that polymeric PGN internalization occurs through two endocytic pathways with distinct potentials to trigger immune responses. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

15 pages, 3427 KiB  
Article
Porcine Deltacoronavirus (PDCoV) Entry into PK-15 Cells by Caveolae-Mediated Endocytosis
by Shiqian Li, Dai Xiao, Yujia Zhao, Luwen Zhang, Rui Chen, Weizhe Liu, Yimin Wen, Yijie Liao, Yiping Wen, Rui Wu, Xinfeng Han, Qin Zhao, Senyan Du, Qigui Yan, Xintian Wen, Sanjie Cao and Xiaobo Huang
Viruses 2022, 14(3), 496; https://doi.org/10.3390/v14030496 - 28 Feb 2022
Cited by 13 | Viewed by 3929
Abstract
(1) Background: Porcine deltacoronavirus (PDCoV) is a newly emerged enteric virus affecting pig breeding industries worldwide, and its pathogenic mechanism remains unclear. (2) Methods: In this study, we preliminarily identified the endocytic pathway of PDCoV in PK-15 cells, using six chemical inhibitors (targeting [...] Read more.
(1) Background: Porcine deltacoronavirus (PDCoV) is a newly emerged enteric virus affecting pig breeding industries worldwide, and its pathogenic mechanism remains unclear. (2) Methods: In this study, we preliminarily identified the endocytic pathway of PDCoV in PK-15 cells, using six chemical inhibitors (targeting clathrin-mediated endocytosis, caveolae-mediated endocytosis, macropinocytosis pathway and endosomal acidification), overexpression of dominant-negative (DN) mutants to treat PK-15 cells and proteins knockdown. (3) Results: The results revealed that PDCoV entry was not affected after treatment with chlorpromazine (CPZ), 5-(N-ethyl-N-isopropyl) amiloride (EIPA)or ammonium chloride (NH4Cl), indicating that the entry of PDCoV into PK-15 cells were clathrin-, micropinocytosis-, PH-independent endocytosis. Conversely, PDCoV infection was sensitive to nystatin, dynasore and methyl-β-cyclodextrin (MβCD) with reduced PDCoV internalization, indicating that entry of PDCoV into PK-15 cells was caveolae-mediated endocytosis that required dynamin and cholesterol; indirect immunofluorescence and shRNA interference further validated these results. (4) Conclusions: In conclusion, PDCoV entry into PK-15 cells depends on caveolae-mediated endocytosis, which requires cholesterol and dynamin. Our finding is the first initial identification of the endocytic pathway of PDCoV in PK-15 cells, providing a theoretical basis for an in-depth understanding of the pathogenic mechanism of PDCoV and the design of new antiviral targets. Full article
(This article belongs to the Special Issue Animal Coronavirus Pathogenesis and Immunity)
Show Figures

Figure 1

16 pages, 1032 KiB  
Review
Exploiting Endocytosis for Non-Spherical Nanoparticle Cellular Uptake
by Saad Niaz, Ben Forbes and Bahijja Tolulope Raimi-Abraham
Nanomanufacturing 2022, 2(1), 1-16; https://doi.org/10.3390/nanomanufacturing2010001 - 1 Feb 2022
Cited by 25 | Viewed by 7918
Abstract
Several challenges exist for successful nanoparticle cellular uptake—they must be able to cross many physical barriers to reach their target and overcome the cell membrane. A strategy to overcome this challenge is to exploit natural uptake mechanisms namely passive and endocytic (i.e., clathrin- [...] Read more.
Several challenges exist for successful nanoparticle cellular uptake—they must be able to cross many physical barriers to reach their target and overcome the cell membrane. A strategy to overcome this challenge is to exploit natural uptake mechanisms namely passive and endocytic (i.e., clathrin- and caveolin-dependent/-independent endocytosis, macropinocytosis and phagocytosis). The influence of nanoparticle material and size is well documented and understood compared to the influence of nanomaterial shape. Generally, nanoparticle shape is referred to as being either spherical or non-spherical and is known to be an important factor in many processes. Nanoparticle shape-dependent effects in areas such as immune response, cancer drug delivery, theranostics and overall implications for nanomedicines are of great interest. Studies have looked at the cellular uptake of spherical NPs, however, fewer in comparison have investigated the cellular uptake of non-spherical NPs. This review explores the exploitation of endocytic pathways for mainly inorganic non-spherical (shapes of focus include rod, triangular, star-shaped and nanospiked) nanoparticles cellular uptake. The role of mathematical modelling as predictive tools for non-spherical nanoparticle cellular uptake is also reviewed. Both quantitative structure-activity relationship (QSAR) and continuum membrane modelling have been used to gain greater insight into the cellular uptake of complex non-spherical NPs at a greater depth difficult to achieve using experimental methods. Full article
(This article belongs to the Special Issue Current Review in Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

Back to TopTop