Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = circular hollow steel-reinforced concrete column

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6939 KiB  
Article
Behavior of Circular Hollow Steel-Reinforced Concrete Columns under Axial Compression
by Qiuyu Wei, Qingxin Ren, Qinghe Wang and Yannian Zhang
Appl. Sci. 2024, 14(11), 4833; https://doi.org/10.3390/app14114833 - 3 Jun 2024
Cited by 1 | Viewed by 2195
Abstract
The circular hollow steel-reinforced concrete (HSRC) column consists of an inner circular hollow steel tube and outer circular hollow reinforced concrete (RC). This design provides several advantages, including being lightweight, having a wide sectional profile, and having a high flexural stiffness. This paper [...] Read more.
The circular hollow steel-reinforced concrete (HSRC) column consists of an inner circular hollow steel tube and outer circular hollow reinforced concrete (RC). This design provides several advantages, including being lightweight, having a wide sectional profile, and having a high flexural stiffness. This paper aims to investigate the behavior of the circular HSRC columns under axial compression through testing and finite element (FE) modeling. An FE model was established to simulate the circular HSRC columns under axial compression, which was validated against the test data. Additionally, the load distribution and the interface stress between the outer hollow RC and inner steel tube were analyzed. Subsequently, a systematic parametric analysis was conducted on the diameter (d) and thickness (t) of the steel tube; slenderness ratio (λ); strength of concrete (fcu); yield strength of steel tube (fsy), longitudinal rebar (fly), and stirrup (fgy); as well as the stirrup spacing (s). The critical influencing factors of the circular HSRC columns under axial compression were identified. fcu, λ, d, fly, and fsy dramatically influence the bearing capacity, and the stiffness is notably affected by λ and fcu. Finally, three simplified design methods were summarized and evaluated for calculating the bearing capacity of the circular HSRC columns under axial compression. Full article
Show Figures

Figure 1

26 pages, 9714 KiB  
Article
Investigation of Circular Hollow Concrete Columns Reinforced with GFRP Bars and Spirals
by Afaq Ahmad, Alireza Bahrami, Omar Alajarmeh, Nida Chairman and Muhammad Yaqub
Buildings 2023, 13(4), 1056; https://doi.org/10.3390/buildings13041056 - 17 Apr 2023
Cited by 8 | Viewed by 2949
Abstract
Glass fiber-reinforced polymer (GFRP) reinforcements are useful alternatives to traditional steel bars in concrete structures, particularly in vertical structural elements such as columns, as they are less prone to corrosion, and impart increasing strength and endurance of buildings. There is limited research on [...] Read more.
Glass fiber-reinforced polymer (GFRP) reinforcements are useful alternatives to traditional steel bars in concrete structures, particularly in vertical structural elements such as columns, as they are less prone to corrosion, and impart increasing strength and endurance of buildings. There is limited research on the finite element analysis (FEA) of the structural behavior of hollow glass fiber-reinforced polymer reinforced concrete (GFRPRC) columns. The hollow portion can be used for the service duct and for reducing the self-weight of the members. Numerical analysis of the compressive response of circular hollow concrete columns reinforced with GFRP bars and spirals is performed in this study. This article aims to investigate the axial behavior of hollow GFRP concrete columns and compare it with that of solid steel reinforced concrete (RC) columns as well as hollow steel RC columns. The Abaqus software is used to construct finite element models. After calibration of modeling using an experimental test result as a control model, a parametric study is conducted. The columns with the same geometry, loading, and boundary conditions are analyzed in the parametric study. It is resulted that the hollow GFRP concrete columns provide a greater confinement effect than the solid steel RC columns. The average variation in the ultimate axial load-carrying capacities of the experimental results, from that of the FEA values, is noted to be only 3.87%, while the average difference in the corresponding deformations is 7.08%. Moreover, the hollow GFRP concrete columns possess greater axial load and deformation capacities compared with the solid steel RC columns. Full article
(This article belongs to the Collection Advanced Concrete Structures in Civil Engineering)
Show Figures

Figure 1

19 pages, 3097 KiB  
Article
Iterative Finite Element Analysis of Concrete-Filled Steel Tube Columns Subjected to Axial Compression
by Payam Sarir, Huanjun Jiang, Panagiotis G. Asteris, Antonio Formisano and Danial Jahed Armaghani
Buildings 2022, 12(12), 2071; https://doi.org/10.3390/buildings12122071 - 25 Nov 2022
Cited by 20 | Viewed by 2900
Abstract
Since laboratory tests are usually costly, simulating methods using computers are always under the spotlight. This study performed a finite element analysis (FEA) using iterative solutions for simulating circular and square concrete-filled steel tube (CFST) columns infilled with high-strength concrete and reinforced with [...] Read more.
Since laboratory tests are usually costly, simulating methods using computers are always under the spotlight. This study performed a finite element analysis (FEA) using iterative solutions for simulating circular and square concrete-filled steel tube (CFST) columns infilled with high-strength concrete and reinforced with a cross-shaped plate (comprising two plates along the columns that divide the hollow columns into four equal sections) with and without opening. For this reason and for validation purposes, the columns had length of 900 mm, width/diameter of 150 mm and wall thickness of 3 mm. In this study, unlike in some other studies, the cross-shaped plate was assumed to be fixed at the top and the bottom of a column, and the columns were subjected to axial compression pointed in the center. The outcomes revealed that the cross-shaped plate could improve the axial strength of both circular and square CFST columns; however, the structural performance of the square CFST columns changed: local outward buckling was observed after inserting the cross-shaped plate. By inserting an opening on the cross-shaped plate, the bearing capacity of the circular CFST columns was further improved, while the square CFST columns experienced a decline in their ultimate bearing capacity compared with the corresponding models without the opening. The lateral deflection also improved for the circular CFST columns by adding the reinforcement. However, for the square CFST columns, while it initially improved, increasing the thickness of the cross-shaped plate inversely influenced the lateral deflection of the square CFST columns. The results were also compared with some available codes, and a good agreement was achieved with those outcomes. Full article
(This article belongs to the Special Issue Cement and Concrete Research)
Show Figures

Figure 1

24 pages, 12646 KiB  
Article
Evaluation and Prediction of the Bending Behavior of Circular Hollow Steel Tube Sections Using Finite Element Analysis
by Manahel Shahath Khalaf, Amer M. Ibrahim, Hadee Mohammed Najm, Amer Hassan, Mohanad Muayad Sabri Sabri, Mohammed A. Alamir and Ibrahim M. Alarifi
Materials 2022, 15(11), 3919; https://doi.org/10.3390/ma15113919 - 31 May 2022
Cited by 3 | Viewed by 2906
Abstract
Circular hollow steel tube columns are widely used in high-rise buildings and bridges due to their ductility and lower weight compared to reinforced concrete. The use of this type of steel section has several advantages over using reinforced concrete members. The present study [...] Read more.
Circular hollow steel tube columns are widely used in high-rise buildings and bridges due to their ductility and lower weight compared to reinforced concrete. The use of this type of steel section has several advantages over using reinforced concrete members. The present study investigates the bending behavior of steel circular hollow sections when subjected to bending loads. The variations in material characteristics with regard to position along the cross-section of a steel tube member is first considered in this experimental study, providing for a more accurate definition of the material behavior in the model. A supported beam tested by two-point loads is the loading type that is used to study the bending performance of steel tubes. Ten circular hollow beam specimens were prepared and tested up to and post the failure stage with the following dimensions: thickness (2, 3, and 6 mm), diameter (76.2, 101.6, and 219 mm), and span (1000, 1500, and 2000 mm). A finite element analysis has been conducted for these ten specimens using the ANSYS program. The finite element model is compared to experimentally obtained data to verify that both local and global behaviors are correctly considered. The load-deflection results of this analysis showed a good agreement with the experimental results. A parametric study also was performed that considered two variables, which were the effect of the presence of circular rings and the change of opening location in the length direction on the specimens’ behavior. This study showed that the presence of the circular rings in the specimen led to an increase in its ultimate strength (of 53.24%) compared with the non-presence of these rings. In contrast, the presence of openings at 30, 40, and 50% from the specimen length reduced the strength capacity by 8.76, 14.23, and 17.88%, respectively. Full article
Show Figures

Figure 1

39 pages, 10164 KiB  
Article
Artificial Neural Network (ANN) and Finite Element (FEM) Models for GFRP-Reinforced Concrete Columns under Axial Compression
by Haytham F. Isleem, Bassam A. Tayeh, Wesam Salah Alaloul, Muhammad Ali Musarat and Ali Raza
Materials 2021, 14(23), 7172; https://doi.org/10.3390/ma14237172 - 25 Nov 2021
Cited by 56 | Viewed by 4094
Abstract
In reinforced concrete structures, the fiber-reinforced polymer (FRP) as reinforcing rebars have been widely used. The use of GFRP (glass fiber-reinforced polymer) bars to solve the steel reinforcement corrosion problem in various concrete structures is now well documented in many research studies. Hollow [...] Read more.
In reinforced concrete structures, the fiber-reinforced polymer (FRP) as reinforcing rebars have been widely used. The use of GFRP (glass fiber-reinforced polymer) bars to solve the steel reinforcement corrosion problem in various concrete structures is now well documented in many research studies. Hollow concrete-core columns (HCCs) are used to make a lightweight structure and reduce its cost. However, the use of FRP bars in HCCs has not yet gained an adequate level of confidence due to the lack of laboratory tests and standard design guidelines. Therefore, the present paper numerically and empirically explores the axial compressive behavior of GFRP-reinforced hollow concrete-core columns (HCCs). A total of 60 HCCs were simulated in the current version of Finite Element Analysis (FEA) ABAQUS. The reference finite element model (FEM) was built for a wide range of test variables of HCCs based on 17 specimens experimentally tested by the same group of researchers. All columns of 250 mm outer diameter, 0, 40, 45, 65, 90, 120 mm circular inner-hole diameter, and a height of 1000 mm were built and simulated. The effects of other parameters cover unconfined concrete strength from 21.2 to 44 MPa, the internal confinement (center to center spiral spacing = 50, 100, and 150 mm), and the amount of longitudinal GFRP bars (ρv = 1.78–4.02%). The complex column response was defined by the concrete damaged plastic model (CDPM) and the behavior of the GFRP reinforcement was modeled as a linear-elastic behavior up to failure. The proposed FEM showed an excellent agreement with the tested load-strain responses. Based on the database obtained from the ABAQUS and the laboratory test, different empirical formulas and artificial neural network (ANN) models were further proposed for predicting the softening and hardening behavior of GFRP-RC HCCs. Full article
Show Figures

Figure 1

13 pages, 4850 KiB  
Article
Analysing the Confinement Effect in Hollow Core Steel-Concrete Composite Columns under Axial Compression
by Antanas Šapalas and Andrej Mudrov
Materials 2021, 14(20), 6046; https://doi.org/10.3390/ma14206046 - 13 Oct 2021
Cited by 5 | Viewed by 2130
Abstract
Spun concrete technology allows manufacturing the reinforced concrete poles, piles, and columns with a circular hollow core. This concreting method ensures higher concrete density and strength than the traditional vibration technique and self-compacting concrete. This technology defines an attractive alternative for producing steel-concrete [...] Read more.
Spun concrete technology allows manufacturing the reinforced concrete poles, piles, and columns with a circular hollow core. This concreting method ensures higher concrete density and strength than the traditional vibration technique and self-compacting concrete. This technology defines an attractive alternative for producing steel-concrete composite elements, allowing efficient utilisation of the materials due to the confinement effect. This study experimentally investigates the material behaviour of the composite columns subjected to axial compression. The experimental results support the above inference—the test outcomes demonstrate the 1.2–2.1 times increase of the compressive strength of the centrifugal concrete regarding the vibrated counterpart; the experimental resistance of the composite columns 1.25 times exceeds the theoretical load-bearing capacity. The proposed mechanical-geometrical parameter can help to quantify the composite efficiency. The parametric analysis employs the finite element model verified using the test results. It demonstrates a negligible bond model effect on the deformation prediction outcomes, indirectly indicating the steel shell confinement effect and confirming the literature results. Full article
Show Figures

Figure 1

12 pages, 4078 KiB  
Article
Earthquake Response Modeling of Corroded Reinforced Concrete Hollow-Section Piers via Simplified Fiber-Based FE Analysis
by Nicola Scattarreggia, Tianyue Qiao and Daniele Malomo
Sustainability 2021, 13(16), 9342; https://doi.org/10.3390/su13169342 - 20 Aug 2021
Cited by 10 | Viewed by 2964
Abstract
The effect of corrosion-induced damage on the seismic response of reinforced concrete (RC) circular bridge piers has been extensively investigated in the last decade, both experimentally and numerically. Contrarily, only limited research is presently available on hollow-section members, largely employed worldwide and intrinsically [...] Read more.
The effect of corrosion-induced damage on the seismic response of reinforced concrete (RC) circular bridge piers has been extensively investigated in the last decade, both experimentally and numerically. Contrarily, only limited research is presently available on hollow-section members, largely employed worldwide and intrinsically more vulnerable to corrosion attacks. In this paper, fiber-based finite element (FB-FEM) models, typically the preferred choice by practitioners given their reduced computational expense, are validated against previous shake-table and quasi-static cyclic tests on hollow-section RC columns, and then used to investigate the influence of corrosion-induced damage. To this end, modeling strategies of varying complexity are used, including artificial reduction of steel rebar diameter, yield strength and ductility, as well as that of concrete compressive strength to simulate cover loss, and ensuing dissimilarities quantified. Pushover and incremental dynamic analyses are conducted to explore impacts on collapse behavior, extending experimental results while accounting for multiple corrosion rates. Produced outcomes indicate a minimal influence of cover loss; substantial reductions of base shear (up to 37%) and ultimate displacement capacity (up to 50%) were observed, instead, when introducing relevant levels of deterioration due to corrosion (i.e., 30% rebar mass loss). Its predicted impact is generally lower when considering more simplified assumptions, which may thus yield non-conservative predictions. Full article
(This article belongs to the Special Issue Materials and Corrosion)
Show Figures

Figure 1

21 pages, 86366 KiB  
Article
Behavior of an Internally Confined Hollow Reinforced Concrete Column with a Polygonal Cross-Section
by Sungwon Kim, Hyemin Hong and Taekhee Han
Appl. Sci. 2021, 11(9), 4302; https://doi.org/10.3390/app11094302 - 10 May 2021
Cited by 3 | Viewed by 2997
Abstract
The new supporting structure, internally confined hollow reinforced concrete (ICH RC), was suggested by former researchers. It maintains the material saving effect, which is the advantage of the hollow concrete structure, and it solves the brittle fracture problem of the inner wall by [...] Read more.
The new supporting structure, internally confined hollow reinforced concrete (ICH RC), was suggested by former researchers. It maintains the material saving effect, which is the advantage of the hollow concrete structure, and it solves the brittle fracture problem of the inner wall by the inner steel pipe to make it into the 3-axis confinement state. However, until now, its design and analysis model has been limited to a circular cross-section. In this study, to expand the applicability, research and development of an ICH RC structure with a polygonal cross-section were performed. The material model was developed by defining the constraint stress in the members of the concrete and deriving a reasonable stress-strain relationship. For the column model, it was developed to predict the behavior of the polygonal ICH RC columns by analyzing the axial force-moment correlation, moment-curvature, and lateral force-displacement relationship. Each model was verified not only by comparing with the results of previous experiments but also by analyzing the results according to parameters. The maximum load and ultimate displacement values through the developed model showed the difference with the experimental results within 6% of mean error. It was verified that the proposed analytical model reasonably reflects the behavior of actual columns. Full article
(This article belongs to the Topic Industrial Engineering and Management)
Show Figures

Figure 1

Back to TopTop