Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = chronic constrictive injury

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2574 KiB  
Article
The Neuroregenerative Effects of IncobotulinumtoxinA (Inco/A) in a Nerve Lesion Model of the Rat
by Oscar Sánchez-Carranza, Wojciech Danysz, Klaus Fink, Maarten Ruitenberg, Andreas Gravius and Jens Nagel
Int. J. Mol. Sci. 2025, 26(15), 7482; https://doi.org/10.3390/ijms26157482 - 2 Aug 2025
Viewed by 235
Abstract
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats [...] Read more.
The use of Botulinum Neurotoxin A (BoNT/A) to treat peripheral neuropathic pain from nerve injury has garnered interest for its long-lasting effects and safety. This study examined the effects of IncobotulinumtoxinA (Inco/A), a BoNT/A variant without accessory proteins, on nerve regeneration in rats using the chronic constriction injury (CCI) model. Inco/A was administered perineurally at two time points: on days 0 and 21 post CCI. Functional and histological assessments were conducted to evaluate the effect of Inco/A on nerve regeneration. Sciatic Functional Index (SFI) measurements and Compound Muscle Action Potential (CMAP) recordings were conducted at different time points following CCI. Inco/A-treated animals exhibited a 65% improved SFI and 22% reduction in CMAP onset latencies compared to the vehicle-treated group, suggesting accelerated functional nerve recovery. Tissue analysis revealed enhanced remyelination in Inco/A-treated animals and 60% reduction in CGRP and double S100β signal expression compared to controls. Strikingly, 30% reduced immune cell influx into the injury site was observed following Inco/A treatment, suggesting that its anti-inflammatory effect contributes to nerve regeneration. These findings show that two injections of Inco/A promote functional recovery by enhancing neuroregeneration and modulating inflammatory processes, supporting the hypothesis that Inco/A has a neuroprotective and restorative role in nerve injury conditions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

13 pages, 3604 KiB  
Article
β2-Microglobulin Regulates Extracellular Matrix Dynamics During Peripheral Nerve Injury
by Eiki Shirasawa, Kentaro Uchida, Kenji Onuma, Gen Inoue, Koji Eshima, Masashi Satoh, Masayuki Miyagi, Yoji Toyomura, Akira Norisugi and Masashi Takaso
NeuroSci 2025, 6(3), 59; https://doi.org/10.3390/neurosci6030059 - 29 Jun 2025
Viewed by 479
Abstract
Peripheral nerve injury initiates a complex cascade of events coordinating immune responses, extracellular matrix (ECM) remodeling, and neuronal repair. While β2-microglobulin (B2M) is well known for its role in MHC class I-mediated antigen presentation and CD8+ T-cell differentiation, its potential contributions to [...] Read more.
Peripheral nerve injury initiates a complex cascade of events coordinating immune responses, extracellular matrix (ECM) remodeling, and neuronal repair. While β2-microglobulin (B2M) is well known for its role in MHC class I-mediated antigen presentation and CD8+ T-cell differentiation, its potential contributions to non-immune processes remain underexplored. In this study, we investigated the role of B2M in peripheral nerve regeneration using a chronic constriction injury (CCI) model in wild-type and B2M-deficient (B2M-KO) mice. Flow cytometry, RNA sequencing (RNA-seq), and quantitative PCR (qPCR) were performed to assess T-cell subset dynamics and gene expression following injury. Flow cytometric analysis showed that CD3+CD4+ and CD3+CD8+ T-cell populations increased by day 7 post-injury. While CD3+CD4+ T-cell expansion occurred in both groups, a significant increase in CD3+CD8+ T cells was observed only in wild-type mice. RNA-seq analysis at 3 days post-injury—prior to substantial T-cell accumulation—revealed marked downregulation of ECM-related genes in B2M-KO mice, including collagens, matrix-associated proteins, and other key ECM components. KEGG analysis identified suppression of ECM–receptor interaction, PI3K-Akt, and TGF-β signaling pathways. qPCR confirmed reduced expression of Thbs1 in B2M-KO mice. These findings suggest that B2M plays a critical, CD8+ T-cell-independent role in regulating ECM dynamics and regenerative signaling during early nerve repair, expanding the conceptual framework of B2M’s function beyond classical immune roles. Full article
Show Figures

Figure 1

23 pages, 5379 KiB  
Article
Fructose-1,6-Bisphosphate Reduces Chronic Constriction Injury Neuropathic Pain in Mice by Targeting Dorsal Root Ganglia Nociceptive Neuron Activation
by Amanda Martins Dionisio, Paula de Azevedo Oliveira Milanez, Ana Carla Zarpelon-Schutz, Sandra Satie Mizokami, Mariana Marques Bertozzi, Kelly Megumi Yaekashi, Doumit Camilios-Neto, Sergio Marques Borghi, Rubia Casagrande and Waldiceu A. Verri
Pharmaceuticals 2025, 18(5), 660; https://doi.org/10.3390/ph18050660 - 30 Apr 2025
Viewed by 642
Abstract
Background/Objectives: Fructose-1,6-bisphosphate (FBP) is an intermediate product of the glycolytic pathway with analgesic effect in acute inflammatory pain model via the production of adenosine. However, whether FBP is active in neuropathic pain is unknown. Therefore, we reason that it would be suitable to [...] Read more.
Background/Objectives: Fructose-1,6-bisphosphate (FBP) is an intermediate product of the glycolytic pathway with analgesic effect in acute inflammatory pain model via the production of adenosine. However, whether FBP is active in neuropathic pain is unknown. Therefore, we reason that it would be suitable to investigate the analgesic effect and mechanism of action of FBP in a model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain in mice. Methods: After CCI induction, mice received FBP, adenosine, A1 and/or A2A receptor antagonists, and/or inhibitors of the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG)/ATP sensitive K channels (KATP) signaling pathway. Results: FBP (up to 85%) and adenosine (up to 84%) inhibited the mechanical hyperalgesia (electronic aesthesiometer) induced by CCI with similar profiles. FBP analgesia was dependent on adenosine because adenosine A1 and A2A receptors antagonists diminished FPB activity (100% and 79%, respectively). FBP analgesia was also dependent on activating the NO/cGMP/PKG/KATP signaling pathway. Furthermore, FBP treatment increased the production of NO in cultured dorsal root ganglia (DRG) neurons (100% increase), whereas neuronal nitric oxide synthase (nNOS) inhibition decreased (up to 70%) the analgesic effect of FBP. We also observed that FBP reduced the calcium levels of transient receptor potential ankyrin 1 (TRPA1)+ DRG neurons (85%) and paw-flinching triggered by TRPA1 activation (38%). Conclusions: FBP reduced neuropathic pain by reducing DRG neuron activation. The mechanisms involved the activation of adenosine A1 and A2A receptors to trigger the analgesic NO/cGMP/PKG/KATP signaling pathway and reducing TRPA1+ DRG neuron activity. Full article
(This article belongs to the Special Issue Pharmacotherapy of Neuropathic Pain)
Show Figures

Figure 1

21 pages, 5086 KiB  
Article
Insights into the Involvement of TRPA1 Channels in the Neuro-Inflammatory Machinery of Trigeminal Neuralgia
by Chiara Demartini, Rosaria Greco, Anna Maria Zanaboni, Miriam Francavilla, Sara Facchetti, Cristina Nativi and Cristina Tassorelli
Molecules 2025, 30(9), 1884; https://doi.org/10.3390/molecules30091884 - 23 Apr 2025
Viewed by 662
Abstract
Antagonism of transient receptor potential ankyrin type-1 (TRPA1) channels counteracts the experimentally induced trigeminal neuralgia (TN) pain. TRPA1 channels activated/sensitized by inflammatory stimuli can modulate glial cell activity, a driving force for pathological pain. Additionally, the evidence of a link between TRPA1 and [...] Read more.
Antagonism of transient receptor potential ankyrin type-1 (TRPA1) channels counteracts the experimentally induced trigeminal neuralgia (TN) pain. TRPA1 channels activated/sensitized by inflammatory stimuli can modulate glial cell activity, a driving force for pathological pain. Additionally, the evidence of a link between TRPA1 and the inflammatory-related Toll-like receptors 4 (TLR4) and 7 (TLR7) highlights the potential of the TRPA1-blocking strategy to reduce pain and inflammation in TN. In this study, we aimed to further investigate the putative involvement of TRPA1 channels in the inflammatory pathways following the development of TN. We focused on the possible modulation of glial activity after TRPA1 blockade and the crosstalk of TRPA1 with TLR7 and TLR4. In a rat model of TN, based on chronic constriction injury of the infraorbital nerve, the impact of TRPA1 antagonism through ADM_12 treatment was assessed following the onset of mechanical allodynia (26 days post-surgery). The evaluation of central and peripheral inflammatory mediators (by rt-PCR and ELISA) and immunofluorescence staining of glial expression in the trigeminal nucleus caudalis was investigated using plasma samples and areas related to the trigeminal system (trigeminal ganglion and areas containing the trigeminal nucleus caudalis). Compared to sham-operated rats, the TN-like animals showed significant increases in the number of microglial and astroglial cells in the trigeminal nucleus caudalis, with higher and lower protein plasma levels of pro-inflammatory and anti-inflammatory cytokines, respectively. Additionally, in the trigeminal-related areas, TN-like animals showed significantly higher gene expression levels of TLR4, TLR7, miR-let-7b, and high-mobility group box-1. TRPA1 antagonism reverted all the observed alterations in TN-like rats in the trigeminal-related areas and plasma except microglial cell number in the trigeminal nucleus caudalis. The findings suggest that, in addition to their known involvement in the nociceptive pathway, TRPA1 channels may also play a direct or indirect role in pain-related inflammation, through the activation of TLR4- and TLR7-mediated pathways at the neuronal and glial levels. Full article
Show Figures

Figure 1

18 pages, 6905 KiB  
Article
Paeonol Relieves Chronic Neuropathic Pain by Reducing Communication Between Schwann Cells and Macrophages in the Dorsal Root Ganglia After Injury
by Xin Li, Zifeng Zhuang, Yuting Hao, Shaozi Lin, Junyan Gu, Shiquan Chang, Lin Lan, Guoping Zhao and Di Zhang
Int. J. Mol. Sci. 2025, 26(9), 3964; https://doi.org/10.3390/ijms26093964 - 22 Apr 2025
Cited by 3 | Viewed by 884
Abstract
This study investigated the mechanism underlying Paeonol’s therapeutic efficacy against neuropathic pain. GSE158892 dataset data were used to conduct a scRNA-seq analysis. In cell experiments, Schwann cells and macrophages were utilized to examine pain pathogenesis using specific inhibitors. Thirty-two SD rats were randomly [...] Read more.
This study investigated the mechanism underlying Paeonol’s therapeutic efficacy against neuropathic pain. GSE158892 dataset data were used to conduct a scRNA-seq analysis. In cell experiments, Schwann cells and macrophages were utilized to examine pain pathogenesis using specific inhibitors. Thirty-two SD rats were randomly divided into four groups: sham, chronic constriction injury (CCI), ibuprofen, and Paeonol. Behavioral tests combined with ELISA, PCR, western blot, immunohistochemistry, and immunofluorescence analyses were conducted. CellChat analysis demonstrated that, following peripheral nerve injury, Schwann cells secreted IL-34, which interacted with CSF1R on macrophages, leading to the infiltration and activation of macrophages. Paeonol reduced IL-34 production by Schwann cells induced with LPS. Conditioned medium from LPS-stimulated Schwann cells treated with Paeonol did not cause macrophage proliferation or migration, activation of the CSF1 pathway, or ROS production. In CCI rats, Paeonol alleviated mechanical and cold hyperalgesia, while reducing the production of serum inflammatory mediators. Additionally, Paeonol decreased the expression levels of IL-34, CSF1R, phosphorylated ERK (p-ERK), phosphorylated NF-κB (p-NF-κB), and components of the NLRP3 inflammasome in the dorsal root ganglia of CCI rats. Conclusion: Alleviation of neuropathic pain by Paeonol treatment may be achieved by inhibiting the IL-34–CSF1R interaction, suppressing Schwann cell–macrophage interactions, and reducing DRG neuroinflammation. Full article
(This article belongs to the Special Issue Novel Insights into Microglia Heterogeneity and Neurodegeneration)
Show Figures

Graphical abstract

19 pages, 5789 KiB  
Article
Sustained Release of αO-Conotoxin GeXIVA[1,2] via Hydrogel Microneedle Patch for Chronic Neuropathic Pain Management
by Rongyan He, Mingjuan Li, Weitao Li, Wenqi Li, Shuting Xiao, Qiuyu Cao, Huanbai Wang, Dongting Zhangsun and Sulan Luo
Mar. Drugs 2025, 23(4), 161; https://doi.org/10.3390/md23040161 - 7 Apr 2025
Cited by 1 | Viewed by 2489
Abstract
Chronic neuropathic pain severely impairs quality of life, with current therapies often causing adverse effects. Our research group identified αO-conotoxin GeXIVA[1,2] as a potent analgesic candidate derived from marine cone snails. However, its clinical application is limited by rapid clearance and complex administration. [...] Read more.
Chronic neuropathic pain severely impairs quality of life, with current therapies often causing adverse effects. Our research group identified αO-conotoxin GeXIVA[1,2] as a potent analgesic candidate derived from marine cone snails. However, its clinical application is limited by rapid clearance and complex administration. This study developed a sustained-release hydrogel microneedle patch encapsulating GeXIVA[1,2] to address these challenges. Optimized 4:3 (w/w) polyvinyl alcohol (PVA)–sucrose hydrogel formulation achieved 98.6% structural integrity and controlled swelling (ratio = 1.9 at 48 h). The microneedles demonstrated uniform conical morphology (height: 889 ± 49 µm, base: 381 ± 26 µm) enabling epidermal penetration. In spared nerve injury (SNI) models, a single microneedle patch application increased mechanical paw withdrawal thresholds from 0.056 g to 0.7269 g, maintaining efficacy for 3 days. Chronic constriction injury (CCI) models showed comparable pain relief. Notably, microneedle patch treatment improved locomotor function in SNI mice (total movement: 1518 cm vs. 1126 cm untreated). This hydrogel microneedle patch platform extends GeXIVA[1,2]’s analgesic duration from hours to days through sustained release, while resolving administration challenges through transdermal delivery, expanding the potential applications of GeXIVA[1,2], and demonstrating a promising strategy for the chronic neuropathic pain management. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Graphical abstract

24 pages, 10350 KiB  
Article
Using Integrated Network Pharmacology and Metabolomics to Reveal the Mechanisms of the Combined Intervention of Ligustrazine and Sinomenine in CCI-Induced Neuropathic Pain Rats
by Zhaoyue Yuan, Xiaoliang Zhao, Yan Zhang, Yue Jiao, Yang Liu, Chang Gao, Jidan Zhang, Yanyan Ma, Zhiguo Wang and Tao Li
Int. J. Mol. Sci. 2025, 26(6), 2604; https://doi.org/10.3390/ijms26062604 - 13 Mar 2025
Cited by 2 | Viewed by 790
Abstract
Neuropathic pain (NP) is a type of chronic pain resulting from injury or dysfunction of the nerves or spinal cord. Previous studies have shown that the combination of ligustrazine (LGZ) and sinomenine (SIN) exerts a synergistic antinociceptive effect in peripheral and central NP [...] Read more.
Neuropathic pain (NP) is a type of chronic pain resulting from injury or dysfunction of the nerves or spinal cord. Previous studies have shown that the combination of ligustrazine (LGZ) and sinomenine (SIN) exerts a synergistic antinociceptive effect in peripheral and central NP models. On this basis, a comprehensive analgesic evaluation was performed in a chronic constriction injury (CCI)-induced NP model in rats. Sciatic nerve histopathological changes were observed, and 22 cytokines and chemokines levels were analyzed. We also combined network pharmacology and metabolomics to explore their molecular mechanisms. Results showed that the combination of LGZ and SIN significantly alleviated the pain-like behaviors in CCI rats in a time- and dose-dependent manner, demonstrating superior therapeutic effects compared to LGZ or SIN alone. It also improved pathological damage to sciatic nerves and regulated inflammatory cytokine levels. Network pharmacology identified shared and distinct pain-related targets for LGZ and SIN, while metabolomics revealed 54 differential metabolites in plasma, and 17 differential metabolites in CSF were associated with the combined intervention of LGZ and SIN. Finally, through an integrated analysis of the core targets and differential metabolites, tyrosine metabolism, phenylalanine metabolism, and arginine and proline metabolism were identified as potential key metabolic pathways underlying the therapeutic effects of LGZ and SIN in CCI treatment. In conclusion, our study provides evidence to support the clinical application of LGZ and SIN in the treatment of NP. Full article
(This article belongs to the Special Issue Natural Products in Drug Discovery and Development)
Show Figures

Figure 1

20 pages, 2243 KiB  
Article
New Pharmacological Insight into Etanercept and Pregabalin in Allodynia and Nociception: Behavioral Studies in a Murine Neuropathic Pain Model
by Loulwah Alothman, Emad Alhadlaq, Asma Alhussain, Alwaleed Alabdulkarim, Youssef Sari and Shakir D. AlSharari
Brain Sci. 2024, 14(11), 1145; https://doi.org/10.3390/brainsci14111145 - 15 Nov 2024
Cited by 3 | Viewed by 1513
Abstract
Background/Objectives: Neuropathic pain is challenging to treat, often resistant to current therapies, and associated with significant side effects. Pregabalin, an anticonvulsant that modulates calcium channels, is effective but can impair mental and motor functions, especially in older patients. To improve patient outcomes, reducing [...] Read more.
Background/Objectives: Neuropathic pain is challenging to treat, often resistant to current therapies, and associated with significant side effects. Pregabalin, an anticonvulsant that modulates calcium channels, is effective but can impair mental and motor functions, especially in older patients. To improve patient outcomes, reducing the doses of pregabalin and combining it with other drugs targeting different neuropathic pain mechanisms may be beneficial. TNF-α blockers such as etanercept have shown potential in addressing neuropathic pain by affecting sodium channels, synaptic transmission, and neuroinflammation. This study evaluates the efficacy and safety of combining low doses of etanercept and pregabalin in allodynia and nociceptive tests. Materials and Methods: Male C57/BL6 mice underwent chronic constriction injury (CCI) of the sciatic nerve to induce neuropathic pain. They were divided into seven groups: sham control, CCI control, low and high doses of pregabalin, low and high doses of etanercept, and a combination of low doses of both drugs. Behavioral tests, including von Frey, hot-plate, and rotarod tests, were used to assess pain responses and motor activity. Results: The results indicated that a high dose of pregabalin significantly reduced mechanical allodynia and thermal hyperalgesia but impaired motor function. Conversely, low doses of etanercept alone had no significant effect. However, the combination of low doses of etanercept (20 mg/kg) and pregabalin (5 mg/kg) effectively alleviated pain without compromising locomotor activity. Conclusions: These results suggest a novel therapeutic strategy for neuropathic pain, enhancing analgesic efficacy while minimizing adverse effects. Full article
(This article belongs to the Section Sensory and Motor Neuroscience)
Show Figures

Figure 1

20 pages, 15838 KiB  
Article
Daphnetin Ameliorates Neuropathic Pain via Regulation of Microglial Responses and Glycerophospholipid Metabolism in the Spinal Cord
by Wulin Liang, Tianrui Zhang, Mingqian Zhang, Jiahui Gao, Rikang Huang, Xiyan Huang, Jianhua Chen, Lu Cheng, Liyuan Zhang, Zhishan Huang, Qiling Tan, Zhanhong Jia and Shuofeng Zhang
Pharmaceuticals 2024, 17(6), 789; https://doi.org/10.3390/ph17060789 - 16 Jun 2024
Cited by 6 | Viewed by 2143
Abstract
Neuropathic pain (NP) is a common type of chronic pain caused by a lesion or disease of the somatosensory nervous system. This condition imposes a considerable economic burden on society and patients. Daphnetin (DAP) is a natural product isolated from a Chinese medicinal [...] Read more.
Neuropathic pain (NP) is a common type of chronic pain caused by a lesion or disease of the somatosensory nervous system. This condition imposes a considerable economic burden on society and patients. Daphnetin (DAP) is a natural product isolated from a Chinese medicinal herb with various pharmacological activities, such as anti-inflammatory and analgesic properties. However, the underlying mechanisms of these effects are not fully understood. In the present study, we aimed to investigate DAP’s anti-inflammatory and analgesic effects and explore the underlying mechanisms of action. The NP model was established as chronic constrictive injury (CCI) of the sciatic nerve, and pain sensitivity was evaluated by measuring the mechanical withdrawal threshold (MWT) and thermal withdrawal threshold (TWT). The activation of microglia in the spinal dorsal horn was measured via immunofluorescence staining. Protein levels were measured using a western blot assay. Using a mass-spectrometry proteomics platform and an LC-MS/MS-based metabolomics platform, proteins and metabolites in spinal cord tissues were extracted and analyzed. DAP treatment ameliorated the MWT and TWT in CCI rats. The expression of IL-1β, IL-6, and TNF-α was inhibited by DAP treatment in the spinal cords of CCI rats. Moreover, the activation of microglia was suppressed after DAP treatment. The elevation in the levels of P2X4, IRF8, IRF5, BDNF, and p-P38/P38 in the spinal cord caused by CCI was inhibited by DAP. Proteomics and metabolomics results indicated that DAP ameliorated the imbalance of glycerophospholipid metabolism in the spinal cords of CCI rats. DAP can potentially ameliorate NP by regulating microglial responses and glycerophospholipid metabolism in the CCI model. This study provides a pharmacological justification for using DAP in the management of NP. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

15 pages, 2888 KiB  
Article
URB937 Prevents the Development of Mechanical Allodynia in Male Rats with Trigeminal Neuralgia
by Chiara Demartini, Rosaria Greco, Anna Maria Zanaboni, Miriam Francavilla, Sara Facchetti and Cristina Tassorelli
Pharmaceuticals 2023, 16(11), 1626; https://doi.org/10.3390/ph16111626 - 18 Nov 2023
Cited by 5 | Viewed by 2202
Abstract
Cannabinoids are proposed for alleviating neuropathic pain, but their use is limited by cannabimimetic side effects. The inhibition of the fatty acid amide hydrolase (FAAH), the degrading enzyme of the endocannabinoid anandamide, has received attention as an alternative to cannabinoids in the treatment [...] Read more.
Cannabinoids are proposed for alleviating neuropathic pain, but their use is limited by cannabimimetic side effects. The inhibition of the fatty acid amide hydrolase (FAAH), the degrading enzyme of the endocannabinoid anandamide, has received attention as an alternative to cannabinoids in the treatment of neuropathic pain. Here, we investigated the effect of URB937, a blood–brain barrier impermeant FAAH inhibitor, on experimentally induced mechanical allodynia in an animal model of trigeminal neuralgia. Male Sprague-Dawley rats were subjected to chronic constriction injury of the infraorbital nerve (IoN-CCI); operated animals were treated sub-chronically with URB937 (1 mg/kg, i.p.) or vehicle before or after trigeminal mechanical allodynia establishment. We also assayed mRNA expression levels of the pain neuropeptide calcitonin gene-related peptide (CGRP) and cytokines in the medulla, cervical spinal cord, and trigeminal ganglion ipsilateral to IoN-CCI using rt-PCR. URB937 treatment prevented the development of mechanical allodynia and IoN-CCI-induced changes in mRNA expression levels of CGRP and cytokines in the evaluated areas. When administered after allodynia development, URB937 prevented IoN-CCI-induced changes in CGRP and cytokine gene expression; this was not associated with a significant abrogation of the mechanical allodynia. These findings suggest that URB937 may counteract, but not reverse, the development of allodynia in trigeminal neuralgia. Further research is needed to elucidate the underlying mechanisms. Full article
(This article belongs to the Special Issue Pharmacotherapy of Neuropathic Pain)
Show Figures

Figure 1

27 pages, 4896 KiB  
Article
Differential Effects of Regulatory T Cells in the Meninges and Spinal Cord of Male and Female Mice with Neuropathic Pain
by Nathan T. Fiore, Brooke A. Keating, Yuting Chen, Sarah I. Williams and Gila Moalem-Taylor
Cells 2023, 12(18), 2317; https://doi.org/10.3390/cells12182317 - 20 Sep 2023
Cited by 16 | Viewed by 3314
Abstract
Immune cells play a critical role in promoting neuroinflammation and the development of neuropathic pain. However, some subsets of immune cells are essential for pain resolution. Among them are regulatory T cells (Tregs), a specialised subpopulation of T cells that limit excessive immune [...] Read more.
Immune cells play a critical role in promoting neuroinflammation and the development of neuropathic pain. However, some subsets of immune cells are essential for pain resolution. Among them are regulatory T cells (Tregs), a specialised subpopulation of T cells that limit excessive immune responses and preserve immune homeostasis. In this study, we utilised intrathecal adoptive transfer of activated Tregs in male and female mice after peripheral nerve injury to investigate Treg migration and whether Treg-mediated suppression of pain behaviours is associated with changes in peripheral immune cell populations in lymphoid and meningeal tissues and spinal microglial and astrocyte reactivity and phenotypes. Treatment with Tregs suppressed mechanical pain hypersensitivity and improved changes in exploratory behaviours after chronic constriction injury (CCI) of the sciatic nerve in both male and female mice. The injected Treg cells were detected in the choroid plexus and the pia mater and in peripheral lymphoid organs in both male and female recipient mice. Nonetheless, Treg treatment resulted in differential changes in meningeal and lymph node immune cell profiles in male and female mice. Moreover, in male mice, adoptive transfer of Tregs ameliorated the CCI-induced increase in microglia reactivity and inflammatory phenotypic shift, increasing M2-like phenotypic markers and attenuating astrocyte reactivity and neurotoxic astrocytes. Contrastingly, in CCI female mice, Treg injection increased astrocyte reactivity and neuroprotective astrocytes. These findings show that the adoptive transfer of Tregs modulates meningeal and peripheral immunity, as well as spinal glial populations, and alleviates neuropathic pain, potentially through different mechanisms in males and females. Full article
(This article belongs to the Special Issue Role of Glial Cells in Neuropathic Pain)
Show Figures

Figure 1

17 pages, 4640 KiB  
Article
Metabolomics Analysis of DRG and Serum in the CCI Model of Mice
by Kaimei Lu, Bin Fang, Yuqi Liu, Fangxia Xu, Chengcheng Zhou, Lijuan Wang, Lianhua Chen and Lina Huang
Brain Sci. 2023, 13(8), 1224; https://doi.org/10.3390/brainsci13081224 - 21 Aug 2023
Cited by 1 | Viewed by 2524
Abstract
Neuropathic pain (NP) is a chronic and intractable disease that is widely present in the general population. It causes painful behavior and even mood changes such as anxiety and depression by altering the metabolism of substances. However, there have been limited metabolomics studies [...] Read more.
Neuropathic pain (NP) is a chronic and intractable disease that is widely present in the general population. It causes painful behavior and even mood changes such as anxiety and depression by altering the metabolism of substances. However, there have been limited metabolomics studies conducted in relation to neuropathic pain. Therefore, in this study, the effects of NP on metabolites in serum and the dorsal root ganglion (DRG) were investigated using a non-targeted metabolomics approach detected by gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) to uncover differential metabolites and affected metabolic pathways associated with NP. Sixty mice were divided into the following two groups: a chronic constriction injury (CCI) of the sciatic nerve group and a sham group (n = 30, each). After 7 days of CCI modeling, the metabolite profiles of serum and the DRG were analyzed using GC/LC-MS for both the CCI and sham groups of mice. Multivariate analysis revealed differential metabolites and altered metabolic pathways between the CCI and sham groups. In the CCI group, our findings provided insights into the complex phospholipid, amino acid and acylcarnitine metabolic perturbations of DRG metabolism. In addition, phospholipid metabolic disorders and impaired glucose metabolism were observed in the serum. Moreover, the metabolic differences in the DRG and serum were correlated with each other. The results from this untargeted metabolomics study provide a perspective on the metabolic impact of NP on serum and the DRG. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

13 pages, 1650 KiB  
Article
Mirogabalin Decreases Pain-like Behaviors by Inhibiting the Microglial/Macrophage Activation, p38MAPK Signaling, and Pronociceptive CCL2 and CCL5 Release in a Mouse Model of Neuropathic Pain
by Renata Zajączkowska, Katarzyna Pawlik, Katarzyna Ciapała, Anna Piotrowska, Agata Ciechanowska, Ewelina Rojewska, Magdalena Kocot-Kępska, Wioletta Makuch, Jerzy Wordliczek and Joanna Mika
Pharmaceuticals 2023, 16(7), 1023; https://doi.org/10.3390/ph16071023 - 19 Jul 2023
Cited by 6 | Viewed by 2621
Abstract
Neuropathic pain is a chronic condition that significantly reduces the quality of life of many patients as a result of ineffective pain relief therapy. For that reason, looking for new analgesics remains an important issue. Mirogabalin is a new gabapentinoid that is a [...] Read more.
Neuropathic pain is a chronic condition that significantly reduces the quality of life of many patients as a result of ineffective pain relief therapy. For that reason, looking for new analgesics remains an important issue. Mirogabalin is a new gabapentinoid that is a specific ligand for the α2σ-1 and α2σ-2 subunits of voltage-gated calcium channels. In the present study, we compared the analgesic effect of pregabalin and mirogabalin in a neuropathic pain chronic constriction injury (CCI) of the sciatic nerve in a mouse model. The main purpose of our study was to determine the effectiveness of mirogabalin administered both once and repeatedly and to explain how the drug influences highly activated cells at the spinal cord level in neuropathy. We also sought to understand whether mirogabalin modulates the selected intracellular pathways (p38MAPK, ERK, JNK) and chemokines (CCL2, CCL5) important for nociceptive transmission, which is crucial information from a clinical perspective. First, our study provides evidence that a single mirogabalin administration diminishes tactile hypersensitivity more effectively than pregabalin. Second, research shows that several indirect mechanisms may be responsible for the beneficial analgesic effect of mirogabalin. This study reports that repeated intraperitoneally (i.p.) mirogabalin administration strongly prevents spinal microglia/macrophage activation evoked by nerve injury, slightly suppresses astroglia and neutrophil infiltration, and reduces the p38MAPK levels associated with neuropathic pain, as measured on Day 7. Moreover, mirogabalin strongly diminished the levels of the pronociceptive chemokines CCL2 and CCL5. Our results indicate that mirogabalin may represent a new strategy for the effective pharmacotherapy of neuropathic pain. Full article
(This article belongs to the Special Issue Pharmacotherapy of Neuropathic Pain)
Show Figures

Figure 1

15 pages, 1681 KiB  
Article
Systemic Chronic Treatment with Cannabidiol in Carioca High- and Low-Conditioned Freezing Rats in the Neuropathic Pain Model: Evaluation of Pain Sensitivity
by Carolina Macêdo-Souza, Silvia Soares Maisonnette, Jaime E. Hallak, José A. Crippa, Antônio W. Zuardi, J. Landeira-Fernandez and Christie Ramos Andrade Leite-Panissi
Pharmaceuticals 2023, 16(7), 1003; https://doi.org/10.3390/ph16071003 - 14 Jul 2023
Cited by 2 | Viewed by 2038
Abstract
Studies have shown high comorbidity of anxiety disorder and chronic pain; generalized anxiety disorder (GAD) and neuropathic pain are among these pathologies. Cannabidiol (CBD) has been considered a promising treatment for these conditions. This study investigated whether chronic systemic treatment with CBD alters [...] Read more.
Studies have shown high comorbidity of anxiety disorder and chronic pain; generalized anxiety disorder (GAD) and neuropathic pain are among these pathologies. Cannabidiol (CBD) has been considered a promising treatment for these conditions. This study investigated whether chronic systemic treatment with CBD alters pain in high- (CHF) and low-freezing (CLF) Carioca rats (GAD model) and control rats (CTL) submitted to chronic neuropathic pain. The rats were evaluated in the sensory aspects (von Frey, acetone, and hot plate tests) before the chronic constriction injury of the ischiatic nerve (CCI) or not (SHAM) and on days 13 and 23 after surgery. Chronic treatment with CBD (5 mg/kg daily) was used for ten days, starting the 14th day after surgery. The open field test on the 22nd also evaluated locomotion and anxiety-like behavior. CBD treatment had an anti-allodynic effect on the mechanical and thermal threshold in all lineages; however, these effects were lower in the CHF and CLF lineages. Considering emotional evaluation, we observed an anxiolytic effect in CTL+CCI and CHF+CCI after CBD treatment and increased mobility in CLF+SHAM rats. These results suggest that the CBD mechanical anti-allodynic and emotional effects can depend on anxiety level. Full article
(This article belongs to the Special Issue Therapeutic Potential for Cannabinoid and Its Receptor)
Show Figures

Figure 1

36 pages, 6188 KiB  
Article
RNA-Seq Reveals Sex Differences in Gene Expression during Peripheral Neuropathic Inflammation and in Pain Relief from a COX-2 Inhibiting Theranostic Nanoemulsion
by Brooke Deal, Katherine Phillips, Caitlin Crelli, Jelena M. Janjic and John A. Pollock
Int. J. Mol. Sci. 2023, 24(11), 9163; https://doi.org/10.3390/ijms24119163 - 23 May 2023
Cited by 6 | Viewed by 3744
Abstract
Given decades of neuroinflammatory pain research focused only on males, there is an urgent need to better understand neuroinflammatory pain in females. This, paired with the fact that currently there is no long-term effective treatment for neuropathic pain furthers the need to evaluate [...] Read more.
Given decades of neuroinflammatory pain research focused only on males, there is an urgent need to better understand neuroinflammatory pain in females. This, paired with the fact that currently there is no long-term effective treatment for neuropathic pain furthers the need to evaluate how neuropathic pain develops in both sexes and how it can be relieved. Here we show that chronic constriction injury of the sciatic nerve caused comparable levels of mechanical allodynia in both sexes. Using a COX-2 inhibiting theranostic nanoemulsion with increased drug loading, both sexes achieved similar reduction in mechanical hypersensitivity. Given that both sexes have improved pain behavior, we specifically explored differential gene expression between sexes in the dorsal root ganglia (DRG) during pain and relief. Total RNA from the DRG revealed a sexually dimorphic expression for injury and relief caused by COX-2 inhibition. Of note, both males and females experience increased expression of activating transcription factor 3 (Atf3), however, only the female DRG shows decreased expression following drug treatment. Alternatively, S100A8 and S100A9 expression appear to play a sex specific role in relief in males. The sex differences in RNA expression reveal that comparable behavior does not necessitate the same gene expression. Full article
(This article belongs to the Special Issue Immune Modulation of Macrophages)
Show Figures

Figure 1

Back to TopTop