Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = choy sum plants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6067 KiB  
Article
Preparation and Application of Core–Shell Nanocarbon-Based Slow-Release Foliar Fertilizer
by Ting Zhang, Xinheng Chen, Hongtao Gu, Huayi Chen, Kaichun Huang, Jinjin Wang, Huijuan Xu, Yulong Zhang and Wenyan Li
Nanomaterials 2025, 15(7), 565; https://doi.org/10.3390/nano15070565 - 7 Apr 2025
Viewed by 1252
Abstract
The application of nanotechnology offers a promising solution to improve fertilizer utilization efficiency by mitigating the losses and volatilization of conventional fertilizers, contributing to sustainable agriculture. In this study, a core–shell nanocarbon-based slow-release foliar fertilizer (CN@mSiO2-NH2@Urea@PDA) was synthesized using [...] Read more.
The application of nanotechnology offers a promising solution to improve fertilizer utilization efficiency by mitigating the losses and volatilization of conventional fertilizers, contributing to sustainable agriculture. In this study, a core–shell nanocarbon-based slow-release foliar fertilizer (CN@mSiO2-NH2@Urea@PDA) was synthesized using nanocarbon (CN) as the core, amino-functionalized mesoporous silica (mSiO2-NH2) as the shell, and polydopamine (PDA) as the coating layer. BET analysis revealed a 3.5-fold and 1.9-fold reduction in material porosity after PDA encapsulation, confirming successful synthesis. The controlled-release performance was enhanced, with a 24% decrease in the release rate and a prolonged nutrient delivery duration. Hydrophobicity tests demonstrated a 20° increase in the contact angle, indicating improved adhesion. Seed germination assays validated biosafety, while field trials showed a 69.94% increase in the choy sum (Brassica rapa) yield, 21.64% higher nitrogen utilization efficiency, and 22.21% reduced nitrogen loss. The foliar application increased the plant nitrogen use efficiency by 18.37%. These findings highlight the potential of CN@mSiO2-NH2@Urea@PDA as an advanced foliar fertilizer, providing a strategic approach to promote nanomaterial applications in agriculture and enhance the acceptance of functional fertilizers among farmers. Full article
(This article belongs to the Special Issue Development and Evaluation of Nanomaterials for Agriculture)
Show Figures

Figure 1

11 pages, 2396 KiB  
Article
Survival, Development, and Fecundity of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on Various Host Plant Species and Their Implication for Pest Management
by Ihsan Nurkomar, Dina Wahyu Trisnawati, Fajrin Fahmi and Damayanti Buchori
Insects 2023, 14(7), 629; https://doi.org/10.3390/insects14070629 - 12 Jul 2023
Cited by 10 | Viewed by 3818
Abstract
Spodoptera frugiperda is Indonesia’s relatively new invasive polyphagous insect pest. So far, S. frugiperda infestation has only been reported in corn and rice in Indonesia. However, S. frugiperda is known to feed on many commercial crops in other countries. To date, information on [...] Read more.
Spodoptera frugiperda is Indonesia’s relatively new invasive polyphagous insect pest. So far, S. frugiperda infestation has only been reported in corn and rice in Indonesia. However, S. frugiperda is known to feed on many commercial crops in other countries. To date, information on the biological parameters of S. frugiperda is limited in Indonesian ecologies. Since host plants are a critical factor for insect life history and have the potential to be used for pest control strategies, it is essential to study the biology and survival of S. frugiperda on different host plants. This research aimed to investigate the survival, development time, and fecundity of S. frugiperda on other host plant species to predict possible infestation rates for use in pest management. The study was conducted by rearing S. frugiperda on 14 common cultivated host plant species in Indonesia. The survival rate, development time, fecundity, and potential attack rate of S. frugiperda on various tested host plants were analyzed in this study. The findings revealed that corn was the primary host for S. frugiperda. The ability of S. frugiperda to survive on papaya, water spinach, banana, spinach, cucumber, and coco grass indicates that these plants are potential alternate hosts for S. frugiperda. Long beans, bok choy, choy sum, and beans might be indicated as a shelter for S. frugiperda. Meanwhile, inappropriate hosts for S. frugiperda include cabbage, broccoli, and cauliflower due to their low survival rate on these plants. This research indicates that these plants have the potential to be used as a hedge, trap, or bunker plant in S. frugiperda management strategies. However, to prevent detrimental damage, control methods are needed in an integrated manner, including monitoring pest populations, habitat manipulation, and conservation of natural enemies. Full article
(This article belongs to the Special Issue Invasive Pest Management and Climate Change)
Show Figures

Figure 1

13 pages, 2249 KiB  
Article
Glucosinolate Diversity Analysis in Choy Sum (Brassica rapa subsp. chinensis var. parachinensis) Germplasms for Functional Food Breeding
by Seong-Hoon Kim, Parthiban Subramanian and Bum-Soo Hahn
Foods 2023, 12(12), 2400; https://doi.org/10.3390/foods12122400 - 16 Jun 2023
Cited by 7 | Viewed by 2889
Abstract
The aim of this study was to analyze glucosinolates (GSLs) in germplasm that are currently conserved at the RDA-Genebank. The analysis focused on the glucosinolate diversity among the analyzed germplasms, with the goal of identifying those that would be most useful for future [...] Read more.
The aim of this study was to analyze glucosinolates (GSLs) in germplasm that are currently conserved at the RDA-Genebank. The analysis focused on the glucosinolate diversity among the analyzed germplasms, with the goal of identifying those that would be most useful for future breeding efforts to produce nutritionally rich Choy sum plants. In total, 23 accessions of Choy sums that possessed ample background passport information were selected. On analyzing the glucosinolate content for 17 different glucosinolates, we observed aliphatic GSLs to be the most common (89.45%) and aromatic GSLs to be the least common (6.94%) of the total glucosinolates detected. Among the highly represented aliphatic GSLs, gluconapin and glucobrassicanapin were found to contribute the most (>20%), and sinalbin, glucoraphanin, glucoraphasatin, and glucoiberin were detected the least (less than 0.05%). We identified one of the accessions, IT228140, to synthesize high quantities of glucobrassicanapin and progoitrin, which have been reported to contain several therapeutic applications. These conserved germplasms are potential bioresources for breeders, and the availability of information, including therapeutically important glucosinolate content, can help produce plant varieties that can naturally impact public health. Full article
Show Figures

Figure 1

17 pages, 5418 KiB  
Article
Penicillium citrinum Provides Transkingdom Growth Benefits in Choy Sum (Brassica rapa var. parachinensis)
by Keyu Gu, Cheng-Yen Chen, Poonguzhali Selvaraj, Shruti Pavagadhi, Yoon Ting Yeap, Sanjay Swarup, Wenhui Zheng and Naweed I. Naqvi
J. Fungi 2023, 9(4), 420; https://doi.org/10.3390/jof9040420 - 29 Mar 2023
Cited by 12 | Viewed by 4011
Abstract
Soil-borne beneficial microbes establish symbioses with plant hosts and play key roles during growth and development therein. In this study, two fungal strains, FLP7 and B9, were isolated from the rhizosphere microbiome associated with Choy Sum (Brassica rapa var. parachinensis) and [...] Read more.
Soil-borne beneficial microbes establish symbioses with plant hosts and play key roles during growth and development therein. In this study, two fungal strains, FLP7 and B9, were isolated from the rhizosphere microbiome associated with Choy Sum (Brassica rapa var. parachinensis) and barley (Hordeum vulgare), respectively. Sequence analyses of the internal transcribed spacer and 18S ribosomal RNA genes combined with colony and conidial morphology identified FLP7 and B9 to be Penicillium citrinum strains/isolates. Plant–fungus interaction assays revealed that isolate B9 showed significant growth promotion effects in Choy Sum plants cultivated in normal soil, as well as under phosphate-limiting conditions. In comparison to the mock control, B9-inoculated plants showed a 34% increase in growth in aerial parts and an 85% upsurge in the fresh weight of roots when cultivated in sterilized soil. The dry biomass of such fungus-inoculated Choy Sum increased by 39% and 74% for the shoots and roots, respectively. Root colonization assays showed that P. citrinum associates directly with the root surface but does not enter or invade the root cortex of the inoculated Choy Sum plants. Preliminary results also indicated that P. citrinum can promote growth in Choy Sum via volatile metabolites too. Interestingly, we detected relatively higher amounts of gibberellins and cytokinins in axenic P. citrinum culture filtrates through liquid chromatography–mass spectrometry analyses. This could plausibly explain the overall growth induction in P. citrinum-inoculated Choy Sum plants. Furthermore, the phenotypic growth defects associated with the Arabidopsis ga1 mutant could be chemically complemented by the exogenous application of P. citrinum culture filtrate, which also showed accumulation of fungus-derived active gibberellins. Our study underscores the importance of transkingdom beneficial effects of such mycobiome-assisted nutrient assimilation and beneficial fungus-derived phytohormone-like metabolites in the induction of robust growth in urban farmed crops. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

24 pages, 3389 KiB  
Article
Consecutive Application Effects of Washed Rice Water on Plant Growth, Soil Chemical Properties, Nutrient Leaching, and Soil Bacterial Population on Three Different Soil Textures over Three Planting Cycles
by Abba Nabayi, Christopher Boon Sung Teh, Ali Kee Zuan Tan and Ngai Paing Tan
Agronomy 2022, 12(9), 2220; https://doi.org/10.3390/agronomy12092220 - 18 Sep 2022
Cited by 2 | Viewed by 14778
Abstract
The benefits of washed rice water (WRW) as a plant fertilizer, particularly over a consecutive application period, are not well studied. An experiment was therefore carried out to determine: the continuous effects of applying unfermented (F0) and 3-day fermented (F3) WRW on the: [...] Read more.
The benefits of washed rice water (WRW) as a plant fertilizer, particularly over a consecutive application period, are not well studied. An experiment was therefore carried out to determine: the continuous effects of applying unfermented (F0) and 3-day fermented (F3) WRW on the: (1) soil chemical properties, soil bacterial count, and the growth and plant nutrient content of a test crop, choy sum (Brassica chinensis var. parachinensis), grown on three contrasting soil textures (sandy clay loam, clay, and silt loam); (2) nutrient leaching losses from these three soils due to the continuous application of WRW; (3) crops’ improvement in water use, if any, in terms of its water productivity (WP) and water use efficiency (WUE); and (4) the relationship between soil bacterial count and plant growth parameters. The effects of F0 and F3 were compared with conventional NPK fertilizer and a control (only tap water; CON). Two factors, treatments and soil types, were used factorially in a randomized complete block design for three consecutive planting cycles. Results showed that NPK and F3 produced a significantly (p < 0.01) higher plant growth in terms of fresh and dry leaf weights and total leaf area by 5 to 61%, compared to that obtained in the other treatments. Furthermore, plants receiving either NPK or F3 had a significantly higher plant nutrient content (P, K, Ca, Mg, and Cu) in the third planting cycle. Clay soil treated with F3, NPK, and F0 had significantly higher NH4+, P, Ca, Mg, Zn, and B, by 19 to 152% relative to the other soils, irrespective of treatments. Soil nutrient leaching losses of P, K, Ca, Mg, Cu, Zn, and B decreased with successive planting cycles for all treatments. However, soils treated with either F3 or F0 experienced higher leaching of NH4+ and NO3  by 37 to 259% and 13 to 34%, respectively, relative to the NPK and CON. Plants treated with either NPK or F3 also had higher WP by 21 to 42% than the other treatments. For all the treatments, plants’ WUE increased with successive planting cycles; however, there was no significant difference between the treatments. F3 stimulated a significantly higher growth and yield of choy sum due to its nutrient and bacterial contents, and the continuous increase in plant growth with successive planting cycles indicated the carryover effects of the treatments, particularly by F3. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

11 pages, 2496 KiB  
Article
Estimation of Dry Matter and N Nutrient Status of Choy Sum by Analyzing Canopy Images and Plant Height Information
by Zhao Wang, Jiang Shi, Sashuang Sun, Lijun Zhu, Yiyin He, Rong Jin, Letan Luo, Lin Zhao, Junxiang Peng and Zhenjiang Zhou
Remote Sens. 2022, 14(16), 3964; https://doi.org/10.3390/rs14163964 - 15 Aug 2022
Cited by 1 | Viewed by 2038
Abstract
The estimation accuracy of plant dry matter by spectra- or remote sensing-based methods tends to decline when canopy coverage approaches closure; this is known as the saturation problem. This study aimed to enhance the estimation accuracy of plant dry matter and subsequently use [...] Read more.
The estimation accuracy of plant dry matter by spectra- or remote sensing-based methods tends to decline when canopy coverage approaches closure; this is known as the saturation problem. This study aimed to enhance the estimation accuracy of plant dry matter and subsequently use the critical nitrogen dilution curve (CNDC) to diagnose N in Choy Sum by analyzing the combined information of canopy imaging and plant height. A three-year experiment with different N levels (0, 25, 50, 100, 150, and 200 kg∙ha−1) was conducted on Choy Sum. Variables of canopy coverage (CC) and plant height were used to build the dry matter and N estimation model. The results showed that the yields of N0 and N25 were significantly lower than those of high-N treatments (N50, N100, N150, and N200) for all three years. The variables of CC × Height had a significant linear relationship with dry matter, with R2 values above 0.87. The good performance of the CC × Height-based model implied that the saturation problem of dry matter prediction was well-addressed. By contrast, the relationship between dry matter and CC was best fitted by an exponential function. CNDC models built based on CC × Height information could satisfactorily differentiate groups of N deficiency and N abundance treatments, implying their feasibility in diagnosing N status. N application rates of 50–100 kgN/ha are recommended as optimal for a good yield of Choy Sum production in the study region. Full article
(This article belongs to the Special Issue Crop Biophysical Parameters Retrieval Using Remote Sensing Data)
Show Figures

Figure 1

17 pages, 4499 KiB  
Article
Rapid Estimation of Water Stress in Choy Sum (Brassica chinensis var. parachinensis) Using Integrative Approach
by Alaa AL Aasmi, Kelvin Edom Alordzinu, Jiuhao Li, Yubin Lan, Sadick Amoakohene Appiah and Songyang Qiao
Sensors 2022, 22(5), 1695; https://doi.org/10.3390/s22051695 - 22 Feb 2022
Cited by 2 | Viewed by 2614
Abstract
To optimize crop water consumption and adopt water-saving measures such as precision irrigation, early identification of plant water status is critical. This study explores the effectiveness of estimating water stress in choy sum (Brassica chinensis var. parachinensis) grown in pots in [...] Read more.
To optimize crop water consumption and adopt water-saving measures such as precision irrigation, early identification of plant water status is critical. This study explores the effectiveness of estimating water stress in choy sum (Brassica chinensis var. parachinensis) grown in pots in greenhouse conditions using Crop Water Stress Index (CWSI) and crop vegetation indicators to improve irrigation water management. Data on CWSI and Spectral reflectance were collected from choy sum plants growing in sandy loam soil with four different soil field capacities (FC): 90–100% FC as no water stress (NWS); 80–90% FC for light water stress (LWS); 70–80% FC for moderate water stress (MWS); and 60–70% FC for severe water stress (SWS). With four treatments and three replications, the experiment was set up as a completely randomized design (CRD). Throughout the growing season, plant water stress tracers such as leaf area index (LAI), canopy temperature (Tc), leaf relative water content (LRWC), leaf chlorophyll content, and yield were measured. Furthermore, CWSI estimated from the Workswell Wiris Agro R Infrared Camera (CWSIW) and spectral data acquisition from the Analytical Spectral Device on choy sum plants were studied at each growth stage. NDVI, Photochemical Reflectance Index positioned at 570 nm (PRI570), normalized PRI (PRInorm), Water Index (WI), and NDWI were the Vegetation indices (VIs) used in this study. At each growth stage, the connections between these CWSIW, VIs, and water stress indicators were statistically analyzed with R2 greater than 0.5. The results revealed that all VIs were valuable guides for diagnosing water stress in choy sum. CWSIW obtained from this study showed that Workswell Wiris Agro R Infrared Camera mounted on proximal remote sensing platform for assessing water stress in choy sum plant was rapid, non-destructive, and user friendly. Therefore, integrating CWSIW and VIs approach gives a more rapid and accurate approach for detecting water stress in choy sum grown under greenhouse conditions to optimize yield by reducing water loss and enhancing food security and sustainability. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

15 pages, 2307 KiB  
Article
Characterization of Plant Volatiles Reveals Distinct Metabolic Profiles and Pathways among 12 Brassicaceae Vegetables
by Yu Liu, Hui Zhang, Shivshankar Umashankar, Xu Liang, Hui Wen Lee, Sanjay Swarup and Choon Nam Ong
Metabolites 2018, 8(4), 94; https://doi.org/10.3390/metabo8040094 - 14 Dec 2018
Cited by 35 | Viewed by 7522
Abstract
Plants emit characteristic organic volatile compounds (VOCs) with diverse biological/ecological functions. However, the links between plant species/varieties and their phytochemical emission profiles remain elusive. Here, we developed a direct headspace solid-phase microextraction (HS-SPME) technique and combined with non-targeted gas chromatography‒high-resolution mass spectrometry (GC-HRMS) [...] Read more.
Plants emit characteristic organic volatile compounds (VOCs) with diverse biological/ecological functions. However, the links between plant species/varieties and their phytochemical emission profiles remain elusive. Here, we developed a direct headspace solid-phase microextraction (HS-SPME) technique and combined with non-targeted gas chromatography‒high-resolution mass spectrometry (GC-HRMS) platform to investigate the VOCs profiles of 12 common Brassicaceae vegetables (watercress, rocket, Brussels sprouts, broccoli, kai lan, choy sum, pak choi, cabbage, Chinese cabbage, cauliflower, radish and cherry radish). The direct HS-SPME sampling approach enabled reproducible capture of the rapid-emitting VOCs upon plant tissue disruption. The results revealed extensive variation in VOCs profiles among the 12 Brassicaceae vegetables. Furthermore, principal component analysis (PCA) showed that the VOC profiles could clearly distinguish the 12 Brassicaceae vegetables, and that these profiles well reflected the classical morphological classification. After multivariate statistical analysis, 44 VOCs with significant differences among the Brassicaceae vegetables were identified. Pathway analysis showed that three secondary metabolism pathways, including the fatty acid pathway, methylerythritol phosphate (MEP) pathway and glucosinolate (GLS) pathway, behave distinctively in these vegetables. These three pathways are responsible for the generation and emission of green leaf volatiles (GLVs), terpenes and isothiocyanates (ITCs), respectively. Correlation analysis further showed that volatile metabolites formed via the common pathway had significantly positive correlations, whereas metabolites from different pathways had either non-significant or significantly negative correlations. Genetic influences on these metabolites across various vegetable types were also evaluated. These findings extend our phytochemical knowledge of the 12 edible Brassicaceae vegetables and provide useful information on their secondary metabolism. Full article
(This article belongs to the Special Issue Plant, Food and Nutritional Metabolomics for Health Enhancement)
Show Figures

Graphical abstract

Back to TopTop