Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = chlorocarbons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2087 KiB  
Article
Completing the Spectral Mosaic of Chloromethane by Adding the CHD2Cl Missing Piece Through the Interplay of Rotational/Vibrational Spectroscopy and Quantum Chemical Calculations
by Mattia Melosso, Paolo Stoppa, Daniela Alvarado-Jiménez, Filippo Tamassia, Carlotta Sapienza, Luca Bizzocchi, Luca Dore, Cristina Puzzarini, Andrea Pietropolli Charmet and Nicola Tasinato
Molecules 2025, 30(7), 1604; https://doi.org/10.3390/molecules30071604 - 3 Apr 2025
Viewed by 511
Abstract
Chloromethane (CH3Cl) is a key chlorinated organic compound not only in atmospheric chemistry, but also in the field of molecular astrophysics and a possible biosignature in exoplanetary atmospheres. While the spectroscopic characterization of the main isotopic species has been addressed in [...] Read more.
Chloromethane (CH3Cl) is a key chlorinated organic compound not only in atmospheric chemistry, but also in the field of molecular astrophysics and a possible biosignature in exoplanetary atmospheres. While the spectroscopic characterization of the main isotopic species has been addressed in great detail, that of its isotopologues remains incomplete. This work aims at filling this gap by focusing on the bideuterated species, CHD2Cl, and exploiting both rotational and vibrational spectroscopy in combination with state-of-the-art quantum-chemical (QC) calculations. First, the rotational spectrum of CHD2Cl has been measured in the millimeter-wave domain, allowing the accurate determination of several spectroscopic constants for four isotopologues, namely 12CHD235Cl, 12CHD237Cl, 13CHD235Cl, and 13CHD237Cl. The newly determined rotational constants have been used to refine the semi-experimental equilibrium structure of chloromethane. Secondly, the vibrational analysis, supported by high-level QC predictions of vibrational energies, has been conducted in the 500–6200 cm−1 infrared (IR) region, enabling the identification of more than 30 bands including fundamental, overtone, and combination transitions. Finally, chloromethane’s radiative efficiency has been simulated using the QC IR absorption cross-sections, and the effects of isotopologue distribution on the predicted radiative properties have been investigated. All these findings greatly improve the comprehension of the spectroscopic properties of bideuterated chloromethane isotopologues, and of chloromethane in general, and facilitate future terrestrial and extraterrestrial studies. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

13 pages, 3650 KiB  
Article
Real-World Vehicle Volatile Organic Compound Emissions and Their Source Profile in Chengdu Based on a Roadside and Tunnel Study
by Miao Feng, Xiang Hu, Li Zhou, Tianyue Zhang, Xiao Zhang, Qinwen Tan, Zihang Zhou, Ye Deng, Danlin Song and Chengmin Huang
Atmosphere 2021, 12(7), 861; https://doi.org/10.3390/atmos12070861 - 2 Jul 2021
Cited by 6 | Viewed by 3087
Abstract
With the continuous progress of air pollution prevention and control in China, the study of the emission characteristics of vehicles has become increasingly important. An in situ experiment was performed in the Tianfu tunnel in Chengdu to determine the vehicle emissions of volatile [...] Read more.
With the continuous progress of air pollution prevention and control in China, the study of the emission characteristics of vehicles has become increasingly important. An in situ experiment was performed in the Tianfu tunnel in Chengdu to determine the vehicle emissions of volatile organic compounds (VOCs). A total of 50 species of VOCs were quantified in the tunnel, with total concentrations in the range of 32.25–162.18 ppbv in the entrance and 52.90–233.92 ppbv in the exit, respectively. Alkanes were the most abundant group, followed by alkenes, aromatic hydrocarbons, oxygenated VOCs, alkynes and chlorocarbons. The general emission factors of the measured VOCs ranged from 141.71 mg veh−1 km−1 to 236.12 mg veh−1 km−1, and the average ± std was 177.31 ± 24.59 mg veh−1 km−1. The emission factors of diesel-fuelled vehicles, gasoline-fuelled vehicles and natural gas-fuelled vehicles were estimated based on linear regression analysis, with values of 272.39 ± 191.17 mg veh−1 km−1, 185.08 ± 12.85 mg veh−1 km−1 and 158.72 ± 3.21 mg veh−1 km−1, respectively. The results of roadside experiments indicate that the roadside ambience atmosphere contains many species characterized with vehicle emission features. Especially, there were fuel evaporation emission related substances, which were higher in content than tunnel samples. Full article
Show Figures

Graphical abstract

56 pages, 1733 KiB  
Review
Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms
by Paolo Zucca and Enrico Sanjust
Molecules 2014, 19(9), 14139-14194; https://doi.org/10.3390/molecules190914139 - 9 Sep 2014
Cited by 417 | Viewed by 27574
Abstract
Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the [...] Read more.
Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides). Full article
(This article belongs to the Special Issue Enzyme Immobilization)
Show Figures

Graphical abstract

6 pages, 112 KiB  
Article
Synthesis of Substituted Phenyl N-(2-hydroxybenzyl)-N-Methylcarbamates
by Oldřich Hrabík, Petr Šimůnek, Jaromír Mindl and Jaromír Kaválek
Molecules 2002, 7(2), 200-205; https://doi.org/10.3390/70200200 - 28 Feb 2002
Cited by 1 | Viewed by 6610
Abstract
Thirteen previously unreported substituted phenyl N-(2-hydroxybenzyl)-Nmethylcarbamates were prepared by the reaction of substituted 2-hydroxybenzyl-Nmethylamines with phenyl chlorocarbonates. They were identified by their 1H- and 13C-NMR spectra. Full article
Show Figures

Figure 1

Back to TopTop