Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = chiral phthalocyanines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2346 KB  
Article
SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes
by Xingdi Zhao, Xinyu Li, Pengfei Bian, Qingrui Zhang, Yuqing Qiao, Mingli Wang and Tifeng Jiao
Coatings 2025, 15(8), 890; https://doi.org/10.3390/coatings15080890 - 1 Aug 2025
Viewed by 824
Abstract
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated [...] Read more.
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated structures, tetramethylporphyrin tetrasulfonic acid (TPPS), and Nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium salt (TsNiPc), and composite LB films of CCA/TPPS and CCA/TsNiPc were successfully prepared by using Langmuir-Blodgett (LB) technology. The circular dichroism (CD) test proved that the CCA/TPPS composite film had a strong CD signal at 300–400 nm, and the composite film showed chirality. This significant optical activity provides a new idea and option for the application of LB films in chiral sensors. In the Surface Enhanced Raman Spectroscopy (SERS) test, the CCA/TPPS composite film was sensitive to signal sensing, in which the enhancement factor EF = 2.28 × 105, indicating that a large number of effective signal response regions were formed on the surface of the film, and the relative standard deviation (RSD) = 12.08%, which demonstrated that the film had excellent uniformity and reproducibility. The high sensitivity and low signal fluctuation make the CCA/TPPS composite LB film a promising SERS substrate material. Full article
Show Figures

Figure 1

15 pages, 1693 KB  
Article
On the Optical Activity of Poly(l-lactic acid) (PLLA) Oligomers and Polymer: Detection of Multiple Cotton Effect on Thin PLLA Solid Film Loaded with Two Dyes
by Franco Cataldo
Int. J. Mol. Sci. 2021, 22(1), 8; https://doi.org/10.3390/ijms22010008 - 22 Dec 2020
Cited by 6 | Viewed by 3830
Abstract
Optical rotatory dispersion (ORD) is a beautiful analytical technique for the study of chiral molecules and polymers. In this study, ORD was applied successfully to follow the degree of polycondensation of l-(+)-lactic acid toward the formation of poly(lactic acid) oligomers (PLAO) and [...] Read more.
Optical rotatory dispersion (ORD) is a beautiful analytical technique for the study of chiral molecules and polymers. In this study, ORD was applied successfully to follow the degree of polycondensation of l-(+)-lactic acid toward the formation of poly(lactic acid) oligomers (PLAO) and high molecular weight poly(l-lactic acid) (PLLA) in a simple esterification reaction equipment. PLLA is a biodegradable polymer obtainable from renewable raw materials. The racemization of the intrinsically isotactic PLLA through thermal treatment can be easily followed through the use of ORD spectroscopy. Organic or molecular electronics is a hot topic dealing with the combination of π-conjugated organic compounds and polymers with specific properties (e.g., chirality) which can be exploited to construct optoelectronic devices, such as organic light-emitting diodes (OLEDs), organic photovoltaic (OPV) high efficiency cells, switchable chirality devices, organic field-effect transistors (OFETs), and so on. ORD spectroscopy was applied to study either the gigantic optical rotation of PLLA films, as well as to detect successfully the excitonic coupling, occurring in thin solid PLLA green film loaded with a combination of two dyes: SY96 (a pyrazolone dye) and PB16 (the metal-free phthalocyanine pigment). The latter compound PLLA loaded with SY96 and PB16 shows a really gigantic optical activity in addition to typical ORD signal due to exciton coupling and may be considered as a simple and easily accessible model composite of a chiral polymer matrix combined with π-conjugated dyes for molecular electronics studies. Full article
(This article belongs to the Special Issue Molecular Nano-Architectures: Chemistry and Physics)
Show Figures

Figure 1

12 pages, 3424 KB  
Communication
Mapping the Chiroptical Properties of Local Domains in Thin Films of Chiral Silicon Phthalocyanines by CD Imaging
by Dora-M. Răsădean, Tiberiu-M. Gianga, Tamás Jávorfi, Rohanah Hussain, Giuliano Siligardi and G. Dan Pantoș
Molecules 2020, 25(24), 6048; https://doi.org/10.3390/molecules25246048 - 21 Dec 2020
Cited by 7 | Viewed by 3162
Abstract
The first example of uniformly chiral thin films of silicon phthalocyanines (SiPcs) are reported. The local domains of the films are mapped using circular dichroism (CD) imaging (CDi) technique available at the Diamond B23 beamline. The CDi allowed us to [...] Read more.
The first example of uniformly chiral thin films of silicon phthalocyanines (SiPcs) are reported. The local domains of the films are mapped using circular dichroism (CD) imaging (CDi) technique available at the Diamond B23 beamline. The CDi allowed us to increase the spatial resolution up to 525× when compared with benchtop spectrometers. The results indicate formation on-surface of chiral and stable supramolecular assemblies with homogenous distribution. Chemical functionalization and solvent choice for deposition allow controllable chiroptical properties to be obtained. The method and technique reported in this work could be applied to prepare and characterize a wide variety of chiral thin films. Full article
(This article belongs to the Special Issue Phthalocyanines and Porphyrins)
Show Figures

Graphical abstract

8 pages, 2298 KB  
Article
Off-Center Rotation of CuPc Molecular Rotor on a Bi(111) Surface and the Chiral Feature
by Kai Sun, Min-Long Tao, Yu-Bing Tu and Jun-Zhong Wang
Molecules 2017, 22(5), 740; https://doi.org/10.3390/molecules22050740 - 4 May 2017
Cited by 8 | Viewed by 6224
Abstract
Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111) surface have been investigated by means of a scanning tunneling microscopy (STM) at liquid nitrogen (LN2) temperature. The rotation axis of each CuPc [...] Read more.
Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111) surface have been investigated by means of a scanning tunneling microscopy (STM) at liquid nitrogen (LN2) temperature. The rotation axis of each CuPc molecular rotor is located at the end of a phthalocyanine group. As molecular coverage increases, the CuPc molecules are self-assembled into various nanoclusters and finally into two-dimensional (2D) domains, in which each CuPc molecule exhibits an apparent chiral feature. Such chiral features of the CuPc molecules can be attributed to the combined effect of asymmetric charge transfer between the CuPc and Bi(111) substrate, and the intermolecular van der Waals interactions. Full article
Show Figures

Figure 1

16 pages, 1892 KB  
Article
Photochemical and Photophysical Properties of Phthalocyanines Modified with Optically Active Alcohols
by Aline A. Ramos, Francisco B. Nascimento, Thaiza F. M. De Souza, Alvaro T. Omori, Tânia M. Manieri, Giselle Cerchiaro and Anderson O. Ribeiro
Molecules 2015, 20(8), 13575-13590; https://doi.org/10.3390/molecules200813575 - 24 Jul 2015
Cited by 25 | Viewed by 8481
Abstract
Three phthalocyanine derivatives were synthesized and characterized: one modified with a racemic mixture of 1-(4-bromophenyl)ethanol and two other macrocycles modified with each one of the enantioenriched isomers (R)-1-(4-bromophenyl)ethanol and (S)-1-(4-bromophenyl)ethanol. The compounds were characterized by 1H-NMR spectroscopy, mass [...] Read more.
Three phthalocyanine derivatives were synthesized and characterized: one modified with a racemic mixture of 1-(4-bromophenyl)ethanol and two other macrocycles modified with each one of the enantioenriched isomers (R)-1-(4-bromophenyl)ethanol and (S)-1-(4-bromophenyl)ethanol. The compounds were characterized by 1H-NMR spectroscopy, mass spectrometry, UV-Vis absorption, and excitation and emission spectra. Additionally, partition coefficient values and the quantum yield of the generation of oxygen reactive species were determined. Interestingly, the phthalocyanine containing a (R)-1-(4-bromophenyl)ethoxy moiety showed higher quantum yield of reactive oxygen species generation than other compounds under the same conditions. In addition, the obtained fluorescence microscopy and cell viability results have shown that these phthalocyanines have different interactions with mammary MCF-7 cells. Therefore, our results indicate that the photochemical and biological properties of phthalocyanines with chiral ligands should be evaluated separately for each enantiomeric species. Full article
(This article belongs to the Special Issue Tetrapyrroles, Porphyrins and Phthalocyanines)
Show Figures

Graphical abstract

Back to TopTop