Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = charcoal-making kiln

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3761 KiB  
Article
Mini-Kilns for Charcoal-Making: An Eco-Friendly Solution for Small-Scale Production of Charcoal and Wood Vinegar
by Felipe Bento de Albuquerque, Rafael Rodolfo de Melo, Alexandre Santos Pimenta, Edgley Alves de Oliveira Paula, Mário Vanoli Scatolino and Fernando Rusch
Inventions 2023, 8(6), 146; https://doi.org/10.3390/inventions8060146 - 17 Nov 2023
Cited by 2 | Viewed by 3996
Abstract
Charcoal is one of the most essential energy sources in the world and is used mainly for domestic and industrial purposes. Brazilian charcoal production occurs in rudimentary masonry kilns without concern for process safety or energy waste. This work aimed to develop a [...] Read more.
Charcoal is one of the most essential energy sources in the world and is used mainly for domestic and industrial purposes. Brazilian charcoal production occurs in rudimentary masonry kilns without concern for process safety or energy waste. This work aimed to develop a mini carbonization system of three kilns coupled to a vertical smoke burner for optimized and environmentally correct charcoal and wood vinegar (WV) production on small farms. The project was divided into three parts for dimensioning: the three-kiln set, the WV condensing device, and the smoke burner. The condenser was designed following the procedures from the standards of TEMA (Tubular Exchangers Manufacturers Association); ASME (Society of Mechanical Engineers of the United States) Section VIII, Division 1; and the NR-13 (Regulatory Standard) of ABNT (Brazilian Association of Technical Standards). In contrast to the current scenario, in which primitive carbonization technologies are still employed, bringing about low charcoal yields and significant pollution release, the use of a mini-kiln that allows charcoal production and wood vinegar recovery combined with pollutant smoke burning is an interesting eco-friendly solution. Thus, the mini-kiln model presented here brings a low cost and environmental safety to the charcoal production chain, reaching sustainability parameters and offering higher income opportunities to small producers. Full article
(This article belongs to the Special Issue Innovative Research and Applications of Biofuels and Bioplastics)
Show Figures

Figure 1

13 pages, 1639 KiB  
Article
Energy Performance of Different Charcoal Production Systems
by Francisco Fernandes Bernardes, Thiago Libório Romanelli, Allana Katiussya Silva Pereira, Gabriela Fontes Mayrinck Cupertino, Márcia Aparecida Fernandes, José Otávio Brito, Elias Costa de Souza, Daniel Saloni and Ananias Francisco Dias Júnior
Energies 2023, 16(21), 7318; https://doi.org/10.3390/en16217318 - 28 Oct 2023
Cited by 2 | Viewed by 2741
Abstract
This study aimed to assess the energy performance of three different charcoal production systems: “encosta” kiln, “rectangular” kiln, and “fornalha” kiln. Data collection involved measuring carbonization product yields and essential process variables, enabling determination of material and energy flows, and evaluation of two [...] Read more.
This study aimed to assess the energy performance of three different charcoal production systems: “encosta” kiln, “rectangular” kiln, and “fornalha” kiln. Data collection involved measuring carbonization product yields and essential process variables, enabling determination of material and energy flows, and evaluation of two main energy indicators: the EROI and the energy balance. The study found that all evaluated systems had a negative energy balance, indicating inefficiency. The encosta kiln system displayed the best energy performance with the highest EROI (0.90 ± 0.45) and the greatest energy intensity (264.50 MJ t−1 ± 132.25), despite having faced technological, operational, and mechanization limitations that explained its limited use on a global scale. Research that evaluates the sustainable production of charcoal has grown in recent years, however, and it is necessary to invest in studies that evaluate the existing energy flow. Thus, the energy performance indicators presented in this study offer valuable insights for decision-making in charcoal production, potentially maximizing efficiency of the systems. Optimizing carbonization system energy performance can be achieved by implementing operational parameters focused on reducing avoidable energy losses, such as improving thermal insulation and introducing systems for heat recovery or combustion gas utilization. Full article
(This article belongs to the Special Issue Biomass Conversion Technologies II)
Show Figures

Graphical abstract

12 pages, 1866 KiB  
Article
Emission and Reduction of Air Pollutants from Charcoal-Making Process in the Vietnamese Mekong Delta
by Pham Van Toan, Lavane Kim, Nguyen Truong Thanh, Huynh Long Toan, Le Anh Tuan, Huynh Vuong Thu Minh and Pankaj Kumar
Climate 2023, 11(7), 149; https://doi.org/10.3390/cli11070149 - 14 Jul 2023
Cited by 5 | Viewed by 4955
Abstract
Charcoal is a fuelwood commonly used for domestic purposes on the household scale in Africa and Southeast Asia. Earnings from charcoal production contribute to the income of local inhabitants in rural areas. Unfortunately, airborne emissions from the traditional charcoal-making process affect both human [...] Read more.
Charcoal is a fuelwood commonly used for domestic purposes on the household scale in Africa and Southeast Asia. Earnings from charcoal production contribute to the income of local inhabitants in rural areas. Unfortunately, airborne emissions from the traditional charcoal-making process affect both human health and the ambient environment. A series of studies were performed at a charcoal-making village in the Vietnamese Mekong Delta (VMD) to assess: (i) air pollutant emissions from the traditional charcoal-making process; (ii) the impacts on human well-being and the environment of traditional charcoal production; (iii) the loading of carbon dioxide from a charcoal-making kiln; and (iv) the efficiency in reducing contaminants of an air pollution-controlling method developed at a charcoal-making kiln. Study results revealed that the traditional charcoal-making method causes a substantial loss of carbon from fuelwood materials and emits the products of incomplete combustion. These contaminants negatively impact human well-being and the environment. Carbon dioxide and incomplete combustion substances emitted from the charcoal-making kiln are potential causes of the global warming phenomenon. The installation of an air pollution-controlling system at the charcoal-making kiln is recommended as an urgent solution before alternatives would be found to control the impacts of charcoal production. Full article
Show Figures

Figure 1

21 pages, 2809 KiB  
Article
Charcoal Production in Portugal: Operating Conditions and Performance of a Traditional Brick Kiln
by Felix Charvet, Arlindo Matos, José Figueiredo da Silva, Luís Tarelho, Mariana Leite and Daniel Neves
Energies 2022, 15(13), 4775; https://doi.org/10.3390/en15134775 - 29 Jun 2022
Cited by 13 | Viewed by 4180
Abstract
Charcoal is produced in large quantities in the Portuguese region of Alentejo mainly using traditional brick kilns. Information about this type of carbonization technology is scarce, which makes it urgent to characterize the process as a starting point for performance improvements. In this [...] Read more.
Charcoal is produced in large quantities in the Portuguese region of Alentejo mainly using traditional brick kilns. Information about this type of carbonization technology is scarce, which makes it urgent to characterize the process as a starting point for performance improvements. In this context, this study aims to characterize the operation of a cylindrical brick kiln (≈80 m3) during regular wood carbonization cycles. Relevant process parameters were monitored along with the yields and/or composition of the main products (carbonization gas, charcoal, and charcoal fines) to evaluate the mass balance of the process. The results show that the bulk of the kiln operates at temperatures below 300 °C, which greatly limits the quality of the charcoal. For instance, the fixed carbon content of charcoal can easily be as low as 60 wt.%. The yield of charcoal is also low, with values below 25 wt.% of dry wood feed. This means that significant quantities of by-products are generated in the process with little or no commercial value. Modifications in the carbonization process are needed to improve efficiency, charcoal quality, and environmental acceptance to sustain this activity in regions where it still represents vital income related to wood-waste management. Full article
(This article belongs to the Special Issue Energy Production from Biomass Valorization)
Show Figures

Figure 1

Back to TopTop