Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = carbon fiber-reinforced polymer rotor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4267 KiB  
Article
High-Speed Kinetic Energy Storage System Development and ANSYS Analysis of Hybrid Multi-Layered Rotor Structure
by Cenk Yangoz and Koray Erhan
Appl. Sci. 2025, 15(10), 5759; https://doi.org/10.3390/app15105759 - 21 May 2025
Cited by 1 | Viewed by 512
Abstract
Flywheel energy storage systems (FESSs) can reach much higher speeds with the development of technology. This is possible with the development of composite materials. In this context, a study is being carried out to increase the performance of the FESS, which is especially [...] Read more.
Flywheel energy storage systems (FESSs) can reach much higher speeds with the development of technology. This is possible with the development of composite materials. In this context, a study is being carried out to increase the performance of the FESS, which is especially used in leading fields, such as electric power grids, the military, aviation, space and automotive. In this study, a flywheel design and analysis with a hybrid (multi-layered) rotor structure are carried out for situations, where the cost and weight are desired to be kept low despite high-speed requirements. The performance values of solid steel, solid titanium, and solid carbon composite flywheels are compared with flywheels made of different thicknesses of carbon composite on steel and different thicknesses of carbon composite materials on titanium. This study reveals that wrapping carbon composite material around metal in varying thicknesses led to an increase of approximately 10–46% in the maximum rotational velocity of the flywheel. Consequently, despite a 33–42% reduction in system mass and constant system volume, the stored energy was enhanced by 10–23%. It was determined that the energy density of the carbon-layered FESS increased by 100% for the steel core and by 65% for the titanium core. Full article
Show Figures

Figure 1

19 pages, 18083 KiB  
Article
A Resilient Approach to a Test Rig Setup in the Qualification of a Tilt Rotor Carbon Fiber-Reinforced Polymer (CFRP) Wing
by Pasquale Vitale, Gianluca Diodati, Salvatore Orlando, Francesco Timbrato, Mario Miano, Antonio Chiariello and Marika Belardo
Aerospace 2024, 11(4), 323; https://doi.org/10.3390/aerospace11040323 - 21 Apr 2024
Cited by 2 | Viewed by 2436
Abstract
The evolution of aircraft wing development has seen significant progress since the early days of aviation, with static testing emerging as a crucial aspect for ensuring safety and reliability. This study focused specifically on the engineering phase of static testing for the Clean [...] Read more.
The evolution of aircraft wing development has seen significant progress since the early days of aviation, with static testing emerging as a crucial aspect for ensuring safety and reliability. This study focused specifically on the engineering phase of static testing for the Clean Sky 2 T-WING project, which is dedicated to testing the innovative composite wing of the Next-Generation Civil Tiltrotor Technology Demonstrator. During the design phase, critical load cases were identified through shear force/bending moment (SFBM) and failure mode analyses. To qualify the wing, an engineering team designed a dedicated test rig equipped with hydraulic jacks to mirror the SFBM diagrams. Adhering to specifications and geometric constraints due to several factors, the jacks aimed to minimize the errors (within 5%) in replicating the diagrams. An effective algorithm, spanning five phases, was employed to pinpoint the optimal configuration. This involved analyzing significant components, conducting least square linear optimizations, selecting solutions that met the directional constraints, analyzing the Pareto front solutions, and evaluating the external jack forces. The outcome was a test rig setup with a viable set of hydraulic jack forces, achieving precise SFBM replication on the wing with minimal jacks and overall applied forces. Full article
Show Figures

Figure 1

15 pages, 3731 KiB  
Article
Torsional Vibrations in the Resonance of High-Speed Rotor Bearings Reduced by Dynamic Properties of Carbon Fiber Polymer Composites
by Zuzana Murčinková, Jozef Živčák and Dominik Sabol
Materials 2023, 16(9), 3324; https://doi.org/10.3390/ma16093324 - 24 Apr 2023
Cited by 1 | Viewed by 2201
Abstract
The present study deals with the harmful torsional resonance vibrations of textile rotor bearings, the amplitudes of which are reduced mainly by the use of high-capacity damping materials, characterized by an internal hierarchical structure and macroshape, added into the machine mechanical system. The [...] Read more.
The present study deals with the harmful torsional resonance vibrations of textile rotor bearings, the amplitudes of which are reduced mainly by the use of high-capacity damping materials, characterized by an internal hierarchical structure and macroshape, added into the machine mechanical system. The additional materials are polymer matrix composites reinforced either by carbon nanofibers or carbon chopped microfibers and either aramid or carbon continuous fibers. The macroshape is based on a honeycomb with internal cavities. Torsional vibrations arise in mechanical systems as a result of fluctuations in the low-level pressing load of the flat belt driving the rotor-bearing pin and the changing of kinematic conditions within it, which, in the resonance area, leads to cage slip and unwanted impulsive torsional vibrations. Moreover, this occurs during high-frequency performance at around 2100 Hz, i.e., 126,000 min−1. The condition, before the redesign, was characterized by significantly reduced textile rotor-bearing life due to significant impulse torsional vibrations in the resonance area. The study showed a significant reduction in average and maximum torsional amplitudes in the resonance area by 33% and 43%, respectively. Furthermore, the paper provides visualization of the propagation of a stress wave at the microscale obtained by the explicit finite element method to show the dispersion of the wave and the fibers as one of the sources of high damping. Full article
(This article belongs to the Special Issue Advanced and Emerging Materials-2022)
Show Figures

Figure 1

10 pages, 3885 KiB  
Article
Effect of Fiber–Matrix Interface Friction on Compressive Strength of High-Modulus Carbon Composites
by Sarvenaz Ghaffari, Guillaume Seon and Andrew Makeev
Molecules 2023, 28(5), 2049; https://doi.org/10.3390/molecules28052049 - 22 Feb 2023
Cited by 4 | Viewed by 3040
Abstract
Carbon-fiber-reinforced polymers (CFRPs) enable lightweight, strong, and durable structures for many engineering applications including aerospace, automotive, biomedical, and others. High-modulus (HM) CFRPs enable the most significant improvement in mechanical stiffness at a lower weight, allowing for extremely lightweight aircraft structures. However, low fiber-direction [...] Read more.
Carbon-fiber-reinforced polymers (CFRPs) enable lightweight, strong, and durable structures for many engineering applications including aerospace, automotive, biomedical, and others. High-modulus (HM) CFRPs enable the most significant improvement in mechanical stiffness at a lower weight, allowing for extremely lightweight aircraft structures. However, low fiber-direction compressive strength has been a major weakness of HM CFRPs, prohibiting their implementation in the primary structures. Microstructural tailoring may provide an innovative means for breaking through the fiber-direction compressive strength barrier. This has been implemented by hybridizing intermediate-modulus (IM) and HM carbon fibers in HM CFRP toughened with nanosilica particles. The new material solution almost doubles the compressive strength of the HM CFRPs, achieving that of the advanced IM CFRPs currently used in airframes and rotor components, but with a much higher axial modulus. The major focus of this work has been understanding the fiber–matrix interface properties governing the fiber-direction compressive strength improvement of the hybrid HM CFRPs. In particular, differences in the surface topology may cause much higher interface friction for IM carbon fibers compared to the HM fibers, which is responsible for the interface strength improvement. In situ Scanning Electron Microscopy (SEM)-based experiments were developed to measure interface friction. Such experiments reveal an approximately 48% higher maximum shear traction due to interface friction for IM carbon fibers compared to the HM fibers. Full article
(This article belongs to the Special Issue Carbon Materials in Materials Chemistry)
Show Figures

Figure 1

18 pages, 2990 KiB  
Article
Effects of Viscoelasticity on the Stress Evolution over the Lifetime of Filament-Wound Composite Flywheel Rotors for Energy Storage
by Miles Skinner and Pierre Mertiny
Appl. Sci. 2021, 11(20), 9544; https://doi.org/10.3390/app11209544 - 14 Oct 2021
Cited by 7 | Viewed by 2429
Abstract
High-velocity and long-lifetime operating conditions of modern high-speed energy storage flywheel rotors may create the necessary conditions for failure modes not included in current quasi-static failure analyses. In the present study, a computational algorithm based on an accepted analytical model was developed to [...] Read more.
High-velocity and long-lifetime operating conditions of modern high-speed energy storage flywheel rotors may create the necessary conditions for failure modes not included in current quasi-static failure analyses. In the present study, a computational algorithm based on an accepted analytical model was developed to investigate the viscoelastic behavior of carbon fiber reinforced polymer composite flywheel rotors with an aluminum hub assembled via a press-fit. The Tsai-Wu failure criterion was applied to assess failure. Two simulation cases were developed to explore the effects of viscoelasticity on composite flywheel rotors, i.e., a worst-case operating condition and a case akin to realistic flywheel operations. The simulations indicate that viscoelastic effects are likely to reduce peak stresses in the composite rim over time. However, viscoelasticity also affects stresses in the hub and the hub-rim interface in ways that may cause rotor failure. It was further found that charge-discharge cycles of the flywheel energy storage device may create significant fatigue loading conditions. It was therefore concluded that the design of composite flywheel rotors should include viscoelastic and fatigue analyses to ensure safe operation. Full article
Show Figures

Figure 1

Back to TopTop