Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = capacitor discharge welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6744 KiB  
Article
Magnetic Pulse Powder Compaction
by Viktors Mironovs, Jekaterina Nikitina, Matthias Kolbe, Irina Boiko and Yulia Usherenko
Metals 2025, 15(2), 155; https://doi.org/10.3390/met15020155 - 4 Feb 2025
Cited by 1 | Viewed by 1248
Abstract
Powder metallurgy (PM) offers several advantages over conventional melt metallurgy, including improved homogeneity, fine grain size, and pseudo-alloying capabilities. Transitioning from conventional methods to PM can result in significant enhancements in material properties and production efficiency by eliminating unnecessary process steps. Dynamic compaction [...] Read more.
Powder metallurgy (PM) offers several advantages over conventional melt metallurgy, including improved homogeneity, fine grain size, and pseudo-alloying capabilities. Transitioning from conventional methods to PM can result in significant enhancements in material properties and production efficiency by eliminating unnecessary process steps. Dynamic compaction techniques, such as impulse and explosive compaction, aim to achieve higher powder density without requiring sintering, further improving PM efficiency. Among these techniques, magnetic pulse compaction (MPC) has gained notable interest due to its unique process mechanics and distinct advantages. MPC utilizes the rapid discharge of energy stored in capacitors to generate a pulsed electromagnetic field, which accelerates a tool to compress the powder. This high-speed process is particularly well-suited for compacting complex geometries and finds extensive application in industries such as powder metallurgy, welding, die forging, and advanced material manufacturing. This paper provides an overview of recent advancements and applications of MPC technology, highlighting its capabilities and potential for broader integration into modern manufacturing processes. Full article
(This article belongs to the Special Issue Powder Metallurgy of Metallic Materials)
Show Figures

Figure 1

15 pages, 6671 KiB  
Article
Multiphysics Numerical Simulation of the Transient Forming Mechanism of Magnetic Pulse Welding
by Yan Li, Dezhi Yang, Wenyu Yang, Zhisheng Wu and Cuirong Liu
Metals 2022, 12(7), 1149; https://doi.org/10.3390/met12071149 - 6 Jul 2022
Cited by 12 | Viewed by 2248
Abstract
Magnetic pulse welding (MPW) is widely used in the connection of dissimilar metals. The welding process involves the coupling of the electromagnetic field and structural field, which is a high-energy transient forming process. Based on the current experimental methods, it is difficult to [...] Read more.
Magnetic pulse welding (MPW) is widely used in the connection of dissimilar metals. The welding process involves the coupling of the electromagnetic field and structural field, which is a high-energy transient forming process. Based on the current experimental methods, it is difficult to capture the relevant data in the process of magnetic pulse welding, and the transient forming mechanism of magnetic pulse welding needs to be further studied. Taking the magnetic pulse welding of an Al-Mg sheet as an example, based on the Ansoft Maxwell and ANSYS finite element simulation platform, the loose coupling method was used to analyze an electromagnetic field generated by the discharging capacitor bank and structural field of the Al-Mg sheet under the action of electromagnetic force. The discharge period of the magnetic pulse welding capacitor bank was 62 μs. The current direction in the aluminum sheet changed once half a cycle, and the direction of the electromagnetic force was always consistent with the Z-axis. Under the skin effect, the magnetic induction intensity on the lower surface of the aluminum sheet was the largest. At 16 μs, the induced current, electromagnetic force and magnetic induction intensity in the aluminum sheet reached the peak values, which were 7.89 A/m2, 4.58 N/m3 and 12.6 T, respectively. The maximum electromagnetic force and velocity in the structural field were 2400 KN and 300 m/s. The structure field simulation reproduces the transient forming process of magnetic pulse welding, and clarifies the formation mechanism of the “intermediate zone rebound uncomposite zone-welding bonding zone-unbound zone”. Based on the numerical simulation technology, the research on the transient forming mechanism of magnetic pulse welding under multiphysics simulations can promote the development and application of magnetic pulse welding technology and better guide engineering practices. Full article
Show Figures

Figure 1

16 pages, 3914 KiB  
Article
Performing an Indirect Coupled Numerical Simulation for Capacitor Discharge Welding of Aluminium Components
by Johannes Koal, Martin Baumgarten, Stefan Heilmann, Jörg Zschetzsche and Uwe Füssel
Processes 2020, 8(11), 1330; https://doi.org/10.3390/pr8111330 - 22 Oct 2020
Cited by 4 | Viewed by 3028
Abstract
Capacitor discharge welding (CDW) for projection welding provides very high current pulses in extremely short welding times. This requires a quick follow up behaviour of the electrodes during the softening of the projection. The possibilities of experimental process investigations are strongly limited because [...] Read more.
Capacitor discharge welding (CDW) for projection welding provides very high current pulses in extremely short welding times. This requires a quick follow up behaviour of the electrodes during the softening of the projection. The possibilities of experimental process investigations are strongly limited because of the covered contact zone and short process times. The Finite Element Method (FEM) allows highly resoluted analyses in time and space and is therefore a suitable tool for process characterization and optimization. To utilize this mean of optimization, an indirect multiphysical numerical model has been developed in Ansys Mechanical APDL. This model couples the physical environments of thermal–electric with structural analysis. It can master the complexity of large deformations, short current rise times and high temperature gradients. A typical ring projection has been chosen as the joining task. The selected aluminium alloys are EN-AW-6082 (ring projection) and EN-AW-5083 (sheet metal). This paper presents the investigated material data, the model design and the methodology for an indirect coupling of the thermal–electric with the structural physic. The electrical contact resistance is adapted to the measured voltage in the experiment. The limits of the model in Ansys Mechanical APDL are due to large mesh deformation and decreasing element stiffness. Further modelling possibilities, which can handle the limits, are described. Full article
Show Figures

Figure 1

23 pages, 11611 KiB  
Article
Correlation Between the Indentation Properties and Microstructure of Dissimilar Capacitor Discharge Welded WC-Co/High-Speed Steel Joints
by Giovanni Maizza, Renato Pero, Frediano De Marco and Takahito Ohmura
Materials 2020, 13(11), 2657; https://doi.org/10.3390/ma13112657 - 11 Jun 2020
Cited by 20 | Viewed by 3760
Abstract
The welding of cemented carbide to tool steel is a challenging task, of scientific and industrial relevance, as it combines the high level of hardness of cemented carbide with the high level of fracture toughness of steel, while reducing the shaping cost and [...] Read more.
The welding of cemented carbide to tool steel is a challenging task, of scientific and industrial relevance, as it combines the high level of hardness of cemented carbide with the high level of fracture toughness of steel, while reducing the shaping cost and extending the application versatility, as its tribological, toughness, thermal and chemical properties can be optimally harmonised. The already existing joining technologies often impart either insufficient toughness or poor high-temperature strength to a joint to withstand the ever-increasing severe service condition demands. In this paper, a novel capacitor discharge welding (CDW) process is investigated for the case of a butt-joint between a tungsten carbide-cobalt (WC-Co) composite rod and an AISI M35 high-speed steel (HSS) rod. The latter was shaped with a conical-ended projection to promote a high current concentration and heat at the welding zone. CDW functions by combining a direct current (DC) electric current pulse and external uniaxial pressure after a preloading step, in which only uniaxial pressure is applied. The relatively high heating and cooling rates promote a thin layer of a characteristic ultrafine microstructure that combines high strength and toughness. Morphological analysis showed that the CDW process: (a) forms a sound and net shaped joint, (b) preserves the sub-micrometric grain structure of the original WC-Co composite base materials, via a transitional layer, (c) refines the microstructure of the original martensite of the HSS base material, and (d) results in an improved corrosion resistance across a 1-mm thick layer near the weld interface on the steel side. A nano-indentation test survey determined: (e) no hardness deterioration on the HSS side of the weld zone, although (f) a slight decrease in hardness was observed across the transitional layer on the composite side. Furthermore, (g) an indication of toughness of the joint was perceived as the size of the crack induced by processing the residual stress after sample preparation was unaltered. Full article
Show Figures

Graphical abstract

Back to TopTop