Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = calcium niobate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5599 KiB  
Article
The Valorization of Marble Waste to Synthesize a Novel Calcium Niobate–Magnesium Niobate Composite and an Investigation of Its Thermophysical Properties
by Pedro Guilherme Sousa Passalini, Andrey Escala Alves, Thallis Custódia Cordeiro, Roberto da Trindade Faria and José Nilson França Holanda
Processes 2025, 13(4), 1014; https://doi.org/10.3390/pr13041014 - 28 Mar 2025
Viewed by 399
Abstract
Marble waste is produced on a large scale in many countries, resulting in serious pollution problems. This investigation aimed to study the valorization potential of marble waste from the ornamental rock industry used in the synthesis of a novel calcium niobate–magnesium niobate composite [...] Read more.
Marble waste is produced on a large scale in many countries, resulting in serious pollution problems. This investigation aimed to study the valorization potential of marble waste from the ornamental rock industry used in the synthesis of a novel calcium niobate–magnesium niobate composite powder prepared by a solid-state reaction between 1000 °C and 1200 °C. The chemical and mineralogical characteristics of the marble waste were determined. Structural and morphological characterizations of the synthesized calcium niobate–magnesium niobate composite powders were conducted by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The thermophysical properties were measured using open photoacoustic cell and photothermal techniques. Structurally, at all synthesis temperatures, the calcium niobate–magnesium niobate powders were found to be composed of a complex mixture of CaNb2O6/Ca2Nb2O7/MgNb2O6/CaMg0.33Nb0.67O3. In addition, the calcium niobate–magnesium niobate composite powders exhibited low values of thermal diffusivity (1.88–2.15 × 10−7 m2/s) and thermal conductivity (0.12–0.16 W/mK). The findings of this investigation highlight the potential of marble waste as a promising sustainable source of carbonate for obtaining calcium niobate–magnesium niobate composite powder, which has thermophysical properties that should be explored in low-thermal-conductivity applications. Full article
(This article belongs to the Special Issue Municipal Solid Waste for Energy Production and Resource Recovery)
Show Figures

Figure 1

12 pages, 4378 KiB  
Article
Brillouin Scattering Study of Ferroelectric Instability of Calcium–Strontium–Barium Niobate Single Crystals
by Seiji Kojima, Md Aftabuzzaman, Jan Dec and Wolfgang Kleemann
Materials 2023, 16(6), 2502; https://doi.org/10.3390/ma16062502 - 21 Mar 2023
Cited by 2 | Viewed by 2131
Abstract
Uniaxial ferroelectrics with tetragonal tungsten bronze structure are important functional materials with photorefractive, electrooptic, piezoelectric, and pyroelectric properties. SrxBa1−xNb2O6 (SBN100x) with x > 50 is known as a typical uniaxial relaxor ferroelectric, while [...] Read more.
Uniaxial ferroelectrics with tetragonal tungsten bronze structure are important functional materials with photorefractive, electrooptic, piezoelectric, and pyroelectric properties. SrxBa1−xNb2O6 (SBN100x) with x > 50 is known as a typical uniaxial relaxor ferroelectric, while CaxBa1−xNb2O6 (CBN100x) undergoes nearly normal ferroelectric phase transitions. Single crystals of CSBN100x = [x(CBN28) + (1 − x) (SBN61)] = xCa0.28Ba0.72Nb2O6 + (1 − x) Sr0.61Ba0.39Nb2O6 with nominal x = 0.00, 0.25, 0.50, 0.75, and 1.00 were studied to clarify the dynamical properties at the crossover from relaxor (x = 0) to normal (x = 1) ferroelectric behavior. The longitudinal acoustic (LA) and transverse acoustic (TA) modes and a central peak (CP) related to the relaxation process of polarization fluctuations along the polar c-axis were studied in uniaxial ferroelectric CSBN single crystals as a function of temperature via Brillouin scattering spectroscopy. A CBN28 (x = 1.00) crystal shows the sharp elastic anomaly of the LA mode in the gigahertz range toward Curie temperature, Tc. However, those of CSBN25 (x = 0.25) and SBN61 (x = 0.00) crystals show diffusive anomalies due to stronger random fields. The relaxation time determined from the width of a CP shows a critical slowing down in the vicinity of Tc. The elastic anomaly and slowing down of relaxation time of CSBN100x crystals become diffusive in the vicinity of Tc as the CBN28 content decreases. The origin of the crossover from relaxor to normal ferroelectric phase transitions is discussed in terms of the difference in the A1 and A2 sites’ occupancies. Full article
(This article belongs to the Special Issue 100th Anniversary of Brillouin Scattering)
Show Figures

Figure 1

15 pages, 4090 KiB  
Article
Molten Chlorides as the Precursors to Modify the Ionic Composition and Properties of LiNbO3 Single Crystal and Fine Powders
by Nikolay A. Viugin, Vladimir A. Khokhlov, Irina D. Zakiryanova, Vasiliy N. Dokutovich and Boris D. Antonov
Materials 2022, 15(10), 3551; https://doi.org/10.3390/ma15103551 - 16 May 2022
Viewed by 2079
Abstract
Modifying lithium niobate cation composition improves not only the functional properties of the acousto- and optoelectronic materials as well as ferroelectrics but elevates the protonic transfer in LiNbO3-based electrolytes of the solid oxide electrochemical devices. Molten chlorides and other thermally stable [...] Read more.
Modifying lithium niobate cation composition improves not only the functional properties of the acousto- and optoelectronic materials as well as ferroelectrics but elevates the protonic transfer in LiNbO3-based electrolytes of the solid oxide electrochemical devices. Molten chlorides and other thermally stable salts are not considered practically as the precursors to synthesize and modify oxide compounds. This article presents and discusses the results of an experimental study of the full or partial heterovalent substitution of lithium ion in nanosized LiNbO3 powders and in the surface layer of LiNbO3 single crystal using molten salt mixtures containing calcium, lead, and rare-earth metals (REM) chlorides as the precursors. The special features of heterovalent ion exchange in chloride melts are revealed such as hetero-epitaxial cation exchange at the interface PbCl2-containing melt/lithium niobate single crystal; the formation of Li(1x) Ca(x/2)V(x/2)Li+ NbO3 solid solutions with cation vacancies as an intermediate product of the reaction of heterovalent substitution of lithium ion by calcium in LiNbO3 powders; the formation of lanthanide orthoniobates with a tetragonal crystal structure such as scheelite as the result of lithium niobate interaction with trichlorides of rare-earth elements. It is shown that the fundamental properties of ion-modifiers (ion radius, nominal charge), temperature, and duration of isothermal treatment determine the products’ chemical composition and the rate of heterovalent substitution of Li+-ion in lithium niobate. Full article
(This article belongs to the Special Issue Electrochemical Processes, Materials and Devices)
Show Figures

Graphical abstract

16 pages, 4360 KiB  
Article
In Vitro Dissolution of Na-Ca-P-Oxynitrides
by Natalia Anna Wójcik, Polina Sinitsyna, Sharafat Ali, Leena Hupa and Bo Jonson
Materials 2021, 14(23), 7425; https://doi.org/10.3390/ma14237425 - 3 Dec 2021
Cited by 3 | Viewed by 1789
Abstract
Sodium-calcium-phosphate based oxynitride glasses and glass-ceramics doped with Mg, Si, and Nb were studied in vitro in simulated body fluid (SBF) under static conditions. The release of ions and pH changes up to 7 days of immersion were investigated. The nitrogen incorporation into [...] Read more.
Sodium-calcium-phosphate based oxynitride glasses and glass-ceramics doped with Mg, Si, and Nb were studied in vitro in simulated body fluid (SBF) under static conditions. The release of ions and pH changes up to 7 days of immersion were investigated. The nitrogen incorporation into phosphate glass matrix was found to notably influence in vitro dissolution only of homogenous glasses. Increasing the nitrogen content in the samples decreased the mean mass loss, while the niobate incorporation increased it. The correlation between the nitrogen content and increase in pH of SBF was also observed. The presence of phosphates crystallites was found to support the dissolution process at the beginning step (up to 3 days). Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

12 pages, 2062 KiB  
Article
High-Pressure and High-Temperature Phase Transitions in Fe2TiO4 and Mg2TiO4 with Implications for Titanomagnetite Inclusions in Superdeep Diamonds
by Masaki Akaogi, Taisuke Tajima, Masaki Okano and Hiroshi Kojitani
Minerals 2019, 9(10), 614; https://doi.org/10.3390/min9100614 - 6 Oct 2019
Cited by 14 | Viewed by 4118
Abstract
Phase transitions of Mg2TiO4 and Fe2TiO4 were examined up to 28 GPa and 1600 °C using a multianvil apparatus. The quenched samples were examined by powder X-ray diffraction. With increasing pressure at high temperature, spinel-type Mg2 [...] Read more.
Phase transitions of Mg2TiO4 and Fe2TiO4 were examined up to 28 GPa and 1600 °C using a multianvil apparatus. The quenched samples were examined by powder X-ray diffraction. With increasing pressure at high temperature, spinel-type Mg2TiO4 decomposes into MgO and ilmenite-type MgTiO3 which further transforms to perovskite-type MgTiO3. At ~21 GPa, the assemblage of MgTiO3 perovskite + MgO changes to 2MgO + TiO2 with baddeleyite (or orthorhombic I)-type structure. Fe2TiO4 undergoes transitions similar to Mg2TiO4 with pressure: spinel-type Fe2TiO4 dissociates into FeO and ilmenite-type FeTiO3 which transforms to perovskite-type FeTiO3. Both of MgTiO3 and FeTiO3 perovskites change to LiNbO3-type phases on release of pressure. In Fe2TiO4, however, perovskite-type FeTiO3 and FeO combine into calcium titanate-type Fe2TiO4 at ~15 GPa. The formation of calcium titanate-type Fe2TiO4 at high pressure may be explained by effects of crystal field stabilization and high spin–low spin transition in Fe2+ in the octahedral sites of calcium titanate-type Fe2TiO4. It is inferred from the determined phase relations that some of Fe2TiO4-rich titanomagnetite inclusions in diamonds recently found in São Luiz, Juina, Brazil, may be originally calcium titanate-type Fe2TiO4 at pressure above ~15 GPa in the transition zone or lower mantle and transformed to spinel-type in the upper mantle conditions. Full article
(This article belongs to the Special Issue Mineral Physics—In Memory of Orson Anderson)
Show Figures

Figure 1

Back to TopTop