Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = cage-type zeolite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2117 KiB  
Article
Structural Characterisation of Zeolites Derived from Lithium Extraction: Insights into Channel- and Cage-Type Frameworks
by Leonardo Leandro dos Santos, Rubens Maribondo do Nascimento and Sibele Berenice Castellã Pergher
Minerals 2024, 14(5), 526; https://doi.org/10.3390/min14050526 - 20 May 2024
Cited by 2 | Viewed by 1449
Abstract
This study investigates the structural and adsorption characteristics of channel- and cage-type zeolites obtained through lithium extraction. Through XRD, FT-IR spectroscopy, and adsorption isotherm analyses, distinct adsorption behaviours of CH4 and CO2 were observed in both zeolite types. Cage-type zeolites exhibited [...] Read more.
This study investigates the structural and adsorption characteristics of channel- and cage-type zeolites obtained through lithium extraction. Through XRD, FT-IR spectroscopy, and adsorption isotherm analyses, distinct adsorption behaviours of CH4 and CO2 were observed in both zeolite types. Cage-type zeolites exhibited higher adsorption capacities attributed to their structural advantages, highlighting the importance of structural framework selection in determining adsorbent efficacy. The presence of structural defects and an amorphous phase influenced adsorption behaviours, while thermodynamic data underscored the role of adsorbate properties. Kinetics studies revealed the influence of the structural framework on CH4 adsorption and CO2 adsorption kinetics. Analysis of adsorbate–adsorbent interactions demonstrated robust interactions, particularly with LPM16-Y. These findings offer insights into the potential applications of zeolites in gas adsorption processes, emphasising the importance of structural properties and adsorbate characteristics in determining adsorption performance. Full article
Show Figures

Figure 1

15 pages, 5528 KiB  
Article
Effect of Carrier Materials for Active Silver in Antibacterial Powder Coatings
by Haiping Zhang, Jixing Cui, Jiayuan Yang, Hui Yan, Xinping Zhu, Yuanyuan Shao, Hui Zhang and Jesse Zhu
Coatings 2024, 14(3), 297; https://doi.org/10.3390/coatings14030297 - 28 Feb 2024
Cited by 4 | Viewed by 3476
Abstract
Environmentally friendly powder coatings which have the advantages of being VOC-free, low-cost, and high-efficiency with a high recovery rate have been attracting increasing research attention. The introduction of antibacterial agents into the powder coatings endows them with a capacity to kill bacteria and [...] Read more.
Environmentally friendly powder coatings which have the advantages of being VOC-free, low-cost, and high-efficiency with a high recovery rate have been attracting increasing research attention. The introduction of antibacterial agents into the powder coatings endows them with a capacity to kill bacteria and viruses on the surface of objects; additionally, this enables them to inhibit the indirect transmission of pathogenic microorganisms. Silver, possessing broad-spectrum, strong, and stable antibacterial properties, is considered to be a promising antibacterial material for use in coating applications. Carrier materials for active silver play an important role in its activity and stability. However, there is a lack of systematic studies on the effects of different types of carriers in such coating systems, especially in green powder coating systems. In this paper, we investigated two types of carriers for active silver agents: zeolite, i.e., Linde type A (LTA) zeolite and Y-type zeolite; clay-based materials, i.e., montmorillonite and vermiculite. All the agents showed high antibacterial activity, with antibacterial rates of over 99% as compared to commercial agents. Among the four agents, the Ag-LTA zeolite antimicrobial agent showed a reduction rate of over 99.99%; additionally, it maintained a reduction rate of 99% after seven washing cycles. Thus, this agent was demonstrated to have the highest effectiveness and high durability; these features can be attributed to the high silver content and small particle size. The LTA zeolite also provides a protective effect for silver ions, protecting them from reduction, due to the restriction of elemental silver formation within the confined interior space of the α-cage structure. The Y-type zeolite antimicrobial agent exhibited a slightly lower antimicrobial performance due to its higher silicon-to-aluminum ratio and its lower cation exchange capacity. Comparatively, antimicrobial agents utilizing clay-based carriers have lower cation exchange capacity, resulting in poorer antimicrobial effectiveness than zeolite carriers. In addition, silver loaded on clay-based materials is prone to detach from the carrier and undergo a reduction reaction, making the coating yellowish in color. This study first provides information on the roles of different types of carriers in powder coating systems; then, this information guides the selection of carriers for active silver for the development of efficient antimicrobial agents and coatings. Full article
Show Figures

Figure 1

18 pages, 8613 KiB  
Article
Step-By-Step Modeling and Demetallation Experimental Study on the Porous Structure in Zeolites
by Pavel Kononov, Irina Kononova, Vyacheslav Moshnikov, Evgeniya Maraeva and Olga Trubetskaya
Molecules 2022, 27(23), 8156; https://doi.org/10.3390/molecules27238156 - 23 Nov 2022
Cited by 5 | Viewed by 2413
Abstract
The organization of microporous space in zeolites is discussed. A new step-by-step model is proposed that explains the principles of organizing the hierarchy of microporous space at the stage of assembling zeolites from elements of minimal size: a primary building unit, secondary building [...] Read more.
The organization of microporous space in zeolites is discussed. A new step-by-step model is proposed that explains the principles of organizing the hierarchy of microporous space at the stage of assembling zeolites from elements of minimal size: a primary building unit, secondary building units, tertiary building units or building polyhedra, a sodalite cage, and a supercage. To illustrate the stepwise hierarchical porous structure of nanomaterials, the following zeolites with small and large micropores have been selected as the model objects: sodalite (SOD, the maximum diameter of a sphere that can enter the pores is 0.3 nm) and zeolites of type A (LTA, the maximum diameter of a sphere that can enter the pores is 0.41 nm), type X, Y (FAU, the maximum diameter of a sphere that can enter the pores is 0.75 nm), and type BETA (the maximum diameter of a sphere that can enter the pores is 0.67 nm). Two-dimensional and three-dimensional modeling in 3Ds Max software was used. We believe that such an approach will be useful for developing ways to create complex zeolite compositions for specific applications, such as catalysis, where the geometry of the pores determines the size of the molecules entering the voids and computer modeling can play an important predictive role. This work takes a look at specific aspects of using the heat desorption method to study mesoporous materials with a BETA zeolite as an example and presents the results of experimental research into the characteristics of the porous structure of hierarchically structured zeolite materials (specific surface area 180–380 m2/g, external surface area 120–200 m2/g, micropore volume 0.001–0.1 mL/g). Full article
(This article belongs to the Special Issue Porous Materials: Synthetic Strategies and Applications)
Show Figures

Figure 1

14 pages, 3365 KiB  
Article
Modification of the Acidic and Textural Properties of HY Zeolite by AHFS Treatment and Its Coke Formation Performance in the Catalytic Cracking Reaction of N-Butene
by Xu Lu, Chenhao Wei, Liang Zhao, Jinsen Gao and Chunming Xu
Catalysts 2022, 12(6), 640; https://doi.org/10.3390/catal12060640 - 11 Jun 2022
Cited by 7 | Viewed by 3052
Abstract
Coke formation on n-butene cracking catalyst is the main reason for the reducing of its lifetime. To study the effects of acidity and textural properties on the coke formation process, a series of HY zeolite-type catalysts were prepared by ammonium hexafluorosilicate treatment (AHFS). [...] Read more.
Coke formation on n-butene cracking catalyst is the main reason for the reducing of its lifetime. To study the effects of acidity and textural properties on the coke formation process, a series of HY zeolite-type catalysts were prepared by ammonium hexafluorosilicate treatment (AHFS). NH3-TPD and Py-IR-TPD were used to systematically study the change law of zeolite acidity. It was found that with the increase of AHFS concentration, the acid density decreased, whereas the ratio of Brønsted acid to Lewis acid first increased and then decreased. Meanwhile, the percentage of Brønsted acid inside the supper cages increased and the strength of Brønsted acid increased with the degree of dealumination. Combined with in situ IR study on coke formation, the relationship between coking and acid site was revealed. It was found that the rate of coke formation on zeolites was affected by acid density, which is the rate of coke formation decreased with the decline of acid density. When the acid density remains at the same level, it was the acid strength that determined the coke formation rate—the stronger the acid strength, the faster the coke formation rate. Full article
(This article belongs to the Topic Catalysis: Homogeneous and Heterogeneous)
Show Figures

Figure 1

12 pages, 6745 KiB  
Article
Experimental Investigation of the Hydrate-Based Gas Separation of Synthetic Flue Gas with 5A Zeolite
by Xiaoya Zang, Na Zhang, Xuebing Zhou, Lihua Wan and Deqing Liang
Energies 2020, 13(17), 4556; https://doi.org/10.3390/en13174556 - 2 Sep 2020
Cited by 7 | Viewed by 2472
Abstract
Coal combustion flue gas contains CO2, a greenhouse gas and driver of climate change. Therefore, CO2 separation and removal is necessary. Fortunately, 5A zeolites are highly porous and can be used as a CO2 adsorbent. In addition, they act [...] Read more.
Coal combustion flue gas contains CO2, a greenhouse gas and driver of climate change. Therefore, CO2 separation and removal is necessary. Fortunately, 5A zeolites are highly porous and can be used as a CO2 adsorbent. In addition, they act as nuclei for hydrate formation. In this work, a composite technology, based on the physical adsorption of CO2 by 5A zeolite and hydrate-based gas separation, was used to separate CO2/N2 gas mixtures. The influence of water content, temperature, pressure, and particle size on gas adsorption and CO2 separation was studied, revealing that the CO2 separation ability of zeolite particles sized 150–180 μm was better than that of those sized 380–830 μm at 271.2 K and 273.2 K. When the zeolite particles were 150–180 μm (type-B zeolite) with a water content of 35.3%, the gas consumption per mole of water (ngas/nH2O ) reached the maximum, 0.048, and the CO2 separation ratio reached 14.30%. The CO2 molar concentration in the remaining gas phase (xCO2gas) was lowest at 271.2 K in the type-B zeolite system with a water content of 47.62%. Raman analysis revealed that CO2 preferentially occupied the small hydrate cages and there was a competitive relationship between N2 and CO2. Full article
Show Figures

Figure 1

18 pages, 2919 KiB  
Review
Energetic Performance of Pure Silica Zeolites under High-Pressure Intrusion of LiCl Aqueous Solutions: An Overview
by Giorgia Confalonieri, T. Jean Daou, Habiba Nouali, Rossella Arletti and Andrey Ryzhikov
Molecules 2020, 25(9), 2145; https://doi.org/10.3390/molecules25092145 - 4 May 2020
Cited by 15 | Viewed by 3108
Abstract
An overview of all the studies on high-pressure intrusion—extrusion of LiCl aqueous solutions in hydrophobic pure silica zeolites (zeosils) for absorption and storage of mechanical energy is presented. Operational principles of heterogeneous lyophobic systems and their possible applications in the domains of mechanical [...] Read more.
An overview of all the studies on high-pressure intrusion—extrusion of LiCl aqueous solutions in hydrophobic pure silica zeolites (zeosils) for absorption and storage of mechanical energy is presented. Operational principles of heterogeneous lyophobic systems and their possible applications in the domains of mechanical energy storage, absorption, and generation are described. The intrusion of LiCl aqueous solutions instead of water allows to considerably increase energetic performance of zeosil-based systems by a strong rise of intrusion pressure. The intrusion pressure increases with the salt concentration and depends considerably on zeosil framework. In the case of channel-type zeosils, it rises with the decrease of pore opening diameter, whereas for cage-type ones, no clear trend is observed. A relative increase of intrusion pressure in comparison with water is particularly strong for the zeosils with narrow pore openings. The use of highly concentrated LiCl aqueous solutions instead of water can lead to a change of system behavior. This effect seems to be related to a lower formation of silanol defects under intrusion of solvated ions and a weaker interaction of the ions with silanol groups of zeosil framework. The influence of zeosil nanostructure on LiCl aqueous solutions intrusion–extrusion is also discussed. Full article
(This article belongs to the Special Issue Microporous/Mesoporous Inorganic Materials)
Show Figures

Graphical abstract

16 pages, 4050 KiB  
Article
Effect of Chlorine-Containing VOCs on Silver Migration and Sintering in ZSM-5 Used in a TSA Process
by Arnaud Monpezat, Gabriel Couchaux, Vincent Thomas, Antoine Artheix, Ludovic Deliere, Claire Gréau, Sylvain Topin, Benoit Coasne, Lucian Roiban, Luis Cardenas and David Farrusseng
Catalysts 2019, 9(8), 686; https://doi.org/10.3390/catal9080686 - 14 Aug 2019
Cited by 7 | Viewed by 4260
Abstract
Silver nanoparticles are currently one of the most studied nanostructured nanomaterials. Because nanoparticle size and dispersion act together in determining a material’s physical and chemical properties, there is a continuous quest to develop size-controlled synthesis methods. Nonetheless, the instability of the nanometer-sized particles, [...] Read more.
Silver nanoparticles are currently one of the most studied nanostructured nanomaterials. Because nanoparticle size and dispersion act together in determining a material’s physical and chemical properties, there is a continuous quest to develop size-controlled synthesis methods. Nonetheless, the instability of the nanometer-sized particles, which is caused by their tendency to aggregate irreversibly into larger particles, remains a recurrent problem. The use of confining scaffolds, such as the regular system of cages in a crystalline zeolite-type material, is often reported in the literature as an efficient solution to overcome particle migration at the surface. Silver nanoparticles encapsulated in ZSM-5 (Ag@ZSM-5) represent a new generation of adsorbent for Xe enrichment from the atmosphere that is currently being developed at the pilot scale in a Temperature Swing Adsorption (TSA) process. In this study, we have found that the presence of Cl-containing compounds in the air (VOCs) leads to a poisoning of the active silver phase by the formation of silver chloride. By a careful study of process parameters, we have found that most of the chlorine can be removed by heat treatment above 573 K so that the adsorption properties of silver are regenerated. That said, when applying 573 K temperature regeneration at the pilot scale, we observe a very minor but observable decay of xenon adsorption capacity that continues cycle after cycle. The mechanism of capacity decay is discussed in terms of (i) the residual presence of Cl at the surface of silver nanoparticles, (ii) the aggregation of silver nanoparticles into larger particles (sintering mechanism), and (iii) the acceleration of silver particle migration to the surface and sintering. Full article
(This article belongs to the Special Issue Synthesis and Application of Zeolite Catalysts)
Show Figures

Graphical abstract

19 pages, 3499 KiB  
Article
Confinement Effect of Micro- and Mesoporous Materials on the Spectroscopy and Dynamics of a Stilbene Derivative Dye
by Maria Rosaria di Nunzio, Ganchimeg Perenlei and Abderrazzak Douhal
Int. J. Mol. Sci. 2019, 20(6), 1316; https://doi.org/10.3390/ijms20061316 - 15 Mar 2019
Cited by 9 | Viewed by 3459
Abstract
Micro- and mesoporous silica-based materials are a class of porous supports that can encapsulate different guest molecules. The formation of these hybrid complexes can be associated with significant alteration of the physico-chemical properties of the guests. Here, we report on a photodynamical study [...] Read more.
Micro- and mesoporous silica-based materials are a class of porous supports that can encapsulate different guest molecules. The formation of these hybrid complexes can be associated with significant alteration of the physico-chemical properties of the guests. Here, we report on a photodynamical study of a push–pull molecule, trans-4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), entrapped within faujasite-type zeolites (HY, NaX, and NaY) and MCM-41 in dichloromethane suspensions. The complex formation gives rise to caged monomers and H- and J-aggregates. Steady-state experiments show that the nanoconfinement provokes net blue shifts of both the absorption and emission spectra, which arise from preferential formation of H-aggregates concomitant with a distortion and/or protonation of the DCM structure. The photodynamics of the hybrid complexes are investigated by nano- to picosecond time-resolved emission experiments. The obtained fluorescence lifetimes are 65–99 ps and 350–400 ps for H- and J-aggregates, respectively, while those of monomers are 2.46–3.87 ns. Evidences for the presence of a charge-transfer (CT) process in trapped DCM molecules (monomers and/or aggregates) are observed. The obtained results are of interest in the interpretation of electron-transfer processes, twisting motions of analogues push–pull systems in confined media and understanding photocatalytic mechanisms using this type of host materials. Full article
Show Figures

Graphical abstract

9 pages, 1263 KiB  
Article
Effect of Nano-Sized Cavities in SAPO-34 Zeolite on Thermodynamics of Adsorbed Gas Mixtures
by Fei Wang, Yasukazu Kobayashi, Yuxin Li, Dezheng Wang and Yao Wang
Nanomaterials 2018, 8(9), 672; https://doi.org/10.3390/nano8090672 - 29 Aug 2018
Cited by 3 | Viewed by 3481
Abstract
Adsorption of dimethyl ether and ethene in SAPO-34 zeolite with the calorimetric (adsorption heat versus coverage) curve measured together with the adsorption isotherm showed two phases of adsorption: first, Type 1 adsorption on acid sites, and second, Type 2 adsorption elsewhere in the [...] Read more.
Adsorption of dimethyl ether and ethene in SAPO-34 zeolite with the calorimetric (adsorption heat versus coverage) curve measured together with the adsorption isotherm showed two phases of adsorption: first, Type 1 adsorption on acid sites, and second, Type 2 adsorption elsewhere in the cages by physisorption that continued with increasing pressure. Binary gas mixture experiments showed that only the ideal adsorbed solution theory (IAST) gave correct surface concentrations, while the multicomponent Langmuir isotherm for competitive adsorption was incorrect even though the acid site concentration was the same for the adsorbates. This is because the adsorption occurred in two adsorption phases while the Langmuir isotherm model is based on a single adsorption phase. Full article
(This article belongs to the Special Issue Nanosized Zeolites and their Applications)
Show Figures

Figure 1

Back to TopTop