Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = brick dust compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4117 KiB  
Review
Flavonoids in the Spotlight: Bridging the Gap between Physicochemical Properties and Formulation Strategies
by Marta Berga, Konstantins Logviss, Liga Lauberte, Artūrs Paulausks and Valentyn Mohylyuk
Pharmaceuticals 2023, 16(10), 1407; https://doi.org/10.3390/ph16101407 - 3 Oct 2023
Cited by 6 | Viewed by 3719
Abstract
Flavonoids are hydroxylated polyphenols that are widely distributed in plants with diverse health benefits. Despite their popularity, the bioavailability of flavonoids is often overlooked, impacting their efficacy and the comparison of products. The study discusses the bioavailability-related physicochemical properties of flavonoids, with a [...] Read more.
Flavonoids are hydroxylated polyphenols that are widely distributed in plants with diverse health benefits. Despite their popularity, the bioavailability of flavonoids is often overlooked, impacting their efficacy and the comparison of products. The study discusses the bioavailability-related physicochemical properties of flavonoids, with a focus on the poorly soluble compounds commonly found in dietary supplements and herbal products. This review sums up the values of pKa, log P, solubility, permeability, and melting temperature of flavonoids. Experimental and calculated data were compiled for various flavonoid subclasses, revealing variations in their physicochemical properties. The investigation highlights the challenges posed by poorly soluble flavonoids and underscores the need for enabling formulation approaches to enhance their bioavailability and therapeutic potential. Compared to aglycones, flavonoid glycosides (with sugar moieties) tend to be more hydrophilic. Most of the reviewed aglycones and glycosides exhibit relatively low log P and high melting points, making them “brick dust” candidates. To improve solubility and absorption, strategies like size reduction, the potential use of solid dispersions and carriers, as well as lipid-based formulations have been discussed. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

15 pages, 6291 KiB  
Article
Acetic Acid as Processing Aid Dramatically Improves Organic Solvent Solubility of Weakly Basic Drugs for Spray Dried Dispersion Manufacture
by Molly S. Adam, Warren K. Miller, Amanda M. Pluntze, Aaron M. Stewart, Jonathan L. Cape, Michael E. Grass and Michael M. Morgen
Pharmaceutics 2022, 14(3), 555; https://doi.org/10.3390/pharmaceutics14030555 - 2 Mar 2022
Cited by 7 | Viewed by 4273 | Correction
Abstract
Many active pharmaceutical ingredients (APIs) in the pharmaceutical pipeline require bioavailability enhancing formulations due to very low aqueous solubility. Although spray dried dispersions (SDDs) have demonstrated broad utility in enhancing the bioavailability of such APIs by trapping them in a high-energy amorphous form, [...] Read more.
Many active pharmaceutical ingredients (APIs) in the pharmaceutical pipeline require bioavailability enhancing formulations due to very low aqueous solubility. Although spray dried dispersions (SDDs) have demonstrated broad utility in enhancing the bioavailability of such APIs by trapping them in a high-energy amorphous form, many new chemical entities (NCEs) are poorly soluble not just in water, but in preferred organic spray drying solvents, e.g., methanol (MeOH) and acetone. Spraying poorly solvent soluble APIs from dilute solutions leads to low process throughput and small particles that challenge downstream processing. For APIs with basic pKa values, spray solvent solubility can be dramatically increased by using an acid to ionize the API. Specifically, we show that acetic acid can increase API solubility in MeOH:H2O by 10-fold for a weakly basic drug, gefitinib (GEF, pKa 7.2), by ionizing GEF to form the transient acetate salt. The acetic acid is removed during drying, resulting in a SDD of the original GEF free base having performance similar to SDDs sprayed from solvents without acetic acid. The increase in solvent solubility enables large scale manufacturing for these challenging APIs by significantly increasing the throughput and reducing the amount of solvent required. Full article
Show Figures

Graphical abstract

20 pages, 1441 KiB  
Article
Stabilising Rural Roads with Waste Streams in Colombia as an Environmental Strategy Based on a Life Cycle Assessment Methodology
by Alejandra Balaguera, Jaume Alberti, Gloria I. Carvajal and Pere Fullana-i-Palmer
Sustainability 2021, 13(5), 2458; https://doi.org/10.3390/su13052458 - 25 Feb 2021
Cited by 7 | Viewed by 2662
Abstract
Roads with low traffic volume link rural settlements together and connect them with urban centres, mobilising goods and agricultural products, and facilitating the transportation of people. In Colombia, most of these roads are in poor conditions, causing social, economic, and environmental problems, and [...] Read more.
Roads with low traffic volume link rural settlements together and connect them with urban centres, mobilising goods and agricultural products, and facilitating the transportation of people. In Colombia, most of these roads are in poor conditions, causing social, economic, and environmental problems, and significantly affecting the mobility, security, and economic progress of the country and its inhabitants. Therefore, it is essential to implement strategies to improve such roads, keeping in mind technical, economic, and environmental criteria. This article shows the results of the application of the environmental life cycle assessment—LCA—to sections of two low-traffic roads located in two different sites in Colombia: one in the Urrao area (Antioquia), located in the centre of the country; and another in La Paz (Cesar), located in the northeast of the country. Each segment was stabilised with alternative materials such as brick dust, fly ash, sulfonated oil, and polymer. The analysis was carried out in three stages: the first was the manufacture of the stabiliser; the second included preliminary actions that ranged from the search for the material to its placement on site; and the third was the stabilisation process, which included the entire application process, from the stabiliser to the road. The environmental impacts are mainly found in the manufacture of stabilisers (60% of the total), for sulfonated oil or polymer, due to the different compounds used during production, before their use as stabilisers. The impact categories with the greatest influence were abiotic depletion potential (ADP), global warming potential (GWP) and terrestrial ecotoxicity potential (TETP). For the stabilisation stage (impact between 40% and 99%), ash and brick dust have the highest impacts. The impact categories most influenced in this stage were: acidification potential (AP), freshwater aquatic ecotoxicity potential (FAETP), human toxicity potential (HTP), marine aquatic ecotoxicity potential (MAETP) and photochemical ozone creation potential (POCP). Full article
(This article belongs to the Special Issue Sustainable Pavement Engineering and Road Materials)
Show Figures

Figure 1

Back to TopTop