Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = brake linings coefficient of friction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8015 KiB  
Article
Signal Detection by Sensors and Determination of Friction Coefficient During Brake Lining Movement
by Leopold Hrabovský, Vieroslav Molnár, Gabriel Fedorko, Nikoleta Mikusova, Jan Blata, Jiří Fries and Tomasz Jachowicz
Sensors 2024, 24(24), 8078; https://doi.org/10.3390/s24248078 - 18 Dec 2024
Cited by 2 | Viewed by 826
Abstract
This article presents a laboratory device by which the course of two signals can be detected using two types of sensors—strain gauges and the DEWESoft DS-NET measuring apparatus. The values of the coefficient of friction of the brake lining when moving against the [...] Read more.
This article presents a laboratory device by which the course of two signals can be detected using two types of sensors—strain gauges and the DEWESoft DS-NET measuring apparatus. The values of the coefficient of friction of the brake lining when moving against the rotating shell of the brake drum were determined from the physical quantities sensed by tensometric sensors and transformed into electrical quantities. The friction coefficient of the brake lining on the circumference of the rotating brake disc shell can be calculated from the known values measured by the sensors, the design dimensions of the brake, and the revolutions of the rotating parts system. The values of the friction coefficient were measured during brake lining movement. A woven asbestos-free material, Beral 1126, which contained brass fibers and resin additives, showed slightly higher values when rotating at previously tested speeds compared to the friction coefficient values obtained when the brake drum rotation was uniformly delayed. The methodology for determining the friction coefficient of the brake lining allowed the laboratory device to verify its magnitude for different friction materials under various operating conditions. Full article
(This article belongs to the Special Issue Sensors and Systems for Automotive and Road Safety (Volume 2))
Show Figures

Figure 1

12 pages, 8800 KiB  
Article
Temperature Influence on Brake Pad Friction Coefficient Modelisation
by Costanzo Bellini, Vittorio Di Cocco, Daniela Iacoviello and Francesco Iacoviello
Materials 2024, 17(1), 189; https://doi.org/10.3390/ma17010189 - 29 Dec 2023
Cited by 12 | Viewed by 4855
Abstract
Brake pad linings are an essential part of the correct functioning of braking systems based on the use of pads and discs. Generally, the compounds used to make the gaskets are characterised by the use of over 20 sintered components, which allow friction [...] Read more.
Brake pad linings are an essential part of the correct functioning of braking systems based on the use of pads and discs. Generally, the compounds used to make the gaskets are characterised by the use of over 20 sintered components, which allow friction coefficients that vary between 0.2 and 0.6 at temperatures up to 200 °C. In this work, a traditional compound was investigated under close-to-real conditions in order to evaluate the tribological behaviour at different temperatures. Finally, a model based on the proportionality between temperature increase and relative variation of the friction coefficient was proposed. From the experimental test, it was evident that the friction coefficient increased with the temperature, passing from 0.4 to 0.6 in the temperature range of 100 °C to 180 °C; however, a further temperature increment until 350 °C caused a reduction in the friction coefficient to 0.2. The proposed model was able to anticipate the abovementioned trend, especially at high temperatures. Full article
Show Figures

Figure 1

14 pages, 10485 KiB  
Article
Enhanced Mechanical Properties of QAl9-4 Aluminum Bronze for High-Speed-Rail Brake Systems with a Pulsed Magnetic Field
by Yujun Hu, Hongjin Zhao, Yinghui Zhang, Bing Zhang and Kefu Hu
Materials 2023, 16(17), 5905; https://doi.org/10.3390/ma16175905 - 29 Aug 2023
Cited by 1 | Viewed by 1604
Abstract
To improve the mechanical properties and wear resistance of QAl9-4 aluminum bronze alloy parts of high-speed rail brake calipers, the solid aluminum bronze alloy was treated with a pulsed magnetic field in which the magnetic induction intensity was 3T at room temperature. After [...] Read more.
To improve the mechanical properties and wear resistance of QAl9-4 aluminum bronze alloy parts of high-speed rail brake calipers, the solid aluminum bronze alloy was treated with a pulsed magnetic field in which the magnetic induction intensity was 3T at room temperature. After that, a tensile test and a friction and wear test were carried out on the alloy. The results indicate that the magnetic field promotes the movement of low-angle grain boundaries less than 2° and splices to form subcrystals or fine crystals, which reduces the mean grain size of the alloy. The disordered dislocation changed into a locally ordered dislocation line, the dislocation distribution became uniform, and the dislocation density increased, which simultaneously improved the alloy’s tensile strength and elongation. The elongation increased by 10.2% compared with that without the magnetic field. The increase in strength can provide strong support for the wear-resistant hard phase, and the enhancement of plasticity can increase the alloy’s ability to absorb frictional vibration. Therefore, it was hard for cracks to form and extend, and the specimen’s average friction coefficient was reduced by 22.05%. The grinding crack width and depth decreased, the wear debris became more uniform and fine, and the alloy’s wear resistance increased. Full article
(This article belongs to the Special Issue Advanced Manufacturing Processes of Metal Forming)
Show Figures

Figure 1

18 pages, 6156 KiB  
Article
A Practical Deceleration Control Method, Prototype Implementation and Test Verification for Rail Vehicles
by Tianhe Ma, Chun Tian, Mengling Wu, Jiajun Zhou and Yinhu Liu
Actuators 2023, 12(3), 128; https://doi.org/10.3390/act12030128 - 17 Mar 2023
Cited by 1 | Viewed by 2960
Abstract
Currently, the theoretical braking force control mode, characterized by actual deceleration as an unstable open-loop output, is the most widely used brake control mode in trains. To overcome the shortcomings of non-deceleration control modes, a deceleration control mode is proposed to realize the [...] Read more.
Currently, the theoretical braking force control mode, characterized by actual deceleration as an unstable open-loop output, is the most widely used brake control mode in trains. To overcome the shortcomings of non-deceleration control modes, a deceleration control mode is proposed to realize the closed-loop control of train deceleration. First, a deceleration control algorithm based on parameter estimation was derived. Then, the deceleration control software logic was designed based on the existing braking system to meet the engineering requirements. Finally, the deceleration control algorithm was verified through a ground combination test bench with real brake control equipment and pneumatic brakes. The test results show that the deceleration control can make the actual braking deceleration of the train accurately track the target deceleration in the presence of disturbances, such as uncertain brake pad friction coefficients, line ramps, vehicle loads and braking force feedback errors, as well as their combined effects, and does not affect the original performance of the braking system. The average deceleration in the deceleration control mode is relatively stable, and the control error of instantaneous deceleration is smaller. Full article
(This article belongs to the Special Issue Actuators and Control of Intelligent Electric Vehicles)
Show Figures

Figure 1

18 pages, 9551 KiB  
Article
Investigation of the Tribological Behaviour of Various AMC Surfaces against Brake Lining Material
by Sarah Johanna Hirsch, Patrick Eiselt, Ismail Ozdemir, Thomas Grund, Andreas Nestler, Thomas Lampke and Andreas Schubert
Materials 2023, 16(3), 1001; https://doi.org/10.3390/ma16031001 - 21 Jan 2023
Cited by 4 | Viewed by 2225
Abstract
AlSi7Mg/SiCp aluminium matrix composites (AMCs) with a high ceramic content (35 vol.%) that were produced by using the field-assisted sintering technique (FAST) were subjected to tribological preconditioning and evaluated as a potential lightweight material to substitute grey cast iron brake discs. However, [...] Read more.
AlSi7Mg/SiCp aluminium matrix composites (AMCs) with a high ceramic content (35 vol.%) that were produced by using the field-assisted sintering technique (FAST) were subjected to tribological preconditioning and evaluated as a potential lightweight material to substitute grey cast iron brake discs. However, since an uncontrolled running-in process of the AMC surface can lead to severe wear and thus to failure of the friction system, AMC surfaces cannot be used directly after finishing and have to be preconditioned. A defined generation of a tribologically conditioned surface (tribosurface) is necessary, as was the aim in this study. To simulate tribological conditions in automotive brake systems, the prepared AMC samples were tested in a pin-on-disc configuration against conventional brake lining material under dry sliding conditions. The influence of the surface topography generated by face turning using different indexable inserts and feeds or an additional plasma electrolytic treatment was investigated at varied test pressures and sliding distances. The results showed that the coefficient of friction remained nearly constant when the set pressure was reached, whereas the initial topography of the samples studied by SEM varied substantially. A novel approach based on analysing the material ratio determined by 3D surface measurement was developed in order to obtain quantitative findings for industrial application. Full article
Show Figures

Figure 1

16 pages, 6841 KiB  
Article
Tribological Aspects Concerning the Study of Overhead Crane Brakes
by Miorita Ungureanu, Nicolae Medan, Nicolae Stelian Ungureanu, Nicolae Pop and Krzysztof Nadolny
Materials 2022, 15(19), 6549; https://doi.org/10.3390/ma15196549 - 21 Sep 2022
Cited by 11 | Viewed by 2119
Abstract
The aim of the study is the tribological analysis of the crane drum brakes. A theoretical analysis of the wear processes for brake lining was performed and the coefficient of friction under tribological conditions was determined experimentally simulating the operating conditions for three [...] Read more.
The aim of the study is the tribological analysis of the crane drum brakes. A theoretical analysis of the wear processes for brake lining was performed and the coefficient of friction under tribological conditions was determined experimentally simulating the operating conditions for three types of brakes. The theoretical study of the wear was oriented towards of determining the lifetime of the brake lining. In the experimental determination of the coefficient of friction, the following parameters were taken into account: the contact pressure between the shoe and the drum; the initial speed of the brake drum; the humidity of the working environment; and the temperature of the drum-brake lining friction surfaces. After performing the experiments, a statistical analysis was conducted, that shows the amount the coefficient of friction is influenced by the previously mentioned parameters: the highest weight was humidity with a value of 35.58%, followed by temperature with a percentage of 23.95%, velocity with 4.54%, and lastly pressure with 4.19%. Furthermore, the equation that expresses the dependence between the coefficient of friction and the parameters is determined. We consider that the results obtained are important for brake manufacturers in order to improve braking efficiency and the safety of overhead cranes. Full article
Show Figures

Figure 1

18 pages, 4720 KiB  
Article
A Mesoscopic Simulation Approach Based on Metal Fibre Characterization Data to Evaluate Brake Friction Performance
by Francesco Varriale, Gabriele Riva, Jens Wahlström and Yezhe Lyu
Lubricants 2022, 10(3), 34; https://doi.org/10.3390/lubricants10030034 - 25 Feb 2022
Cited by 5 | Viewed by 2809
Abstract
The coefficient of friction (COF) is an important parameter when evaluating brake system performance. It is complex to predict friction due to its dependence on parameters, such as sliding velocity, contact pressure, temperature, and friction material mixtures. The aim of this work is [...] Read more.
The coefficient of friction (COF) is an important parameter when evaluating brake system performance. It is complex to predict friction due to its dependence on parameters, such as sliding velocity, contact pressure, temperature, and friction material mixtures. The aim of this work is to evaluate the macroscopic COF of a disc brake system under specific braking conditions by a meso-scale approach, using a cellular automaton simulation where the friction material mixture is modelled starting from its basic components. The influence of the local components in contact is taken into account. Simulated COF values are in line with the experimental values. Full article
(This article belongs to the Special Issue Automotive Tribology II)
Show Figures

Figure 1

15 pages, 2940 KiB  
Article
The Role of Graphitic Carbon Nitride in the Formulation of Copper-Free Friction Composites Designed for Automotive Brake Pads
by Vlastimil Matějka, Mara Leonardi, Petr Praus, Giovanni Straffelini and Stefano Gialanella
Metals 2022, 12(1), 123; https://doi.org/10.3390/met12010123 - 9 Jan 2022
Cited by 16 | Viewed by 2582
Abstract
In this study, graphitic carbon nitride (g-C3N4, labelled as gCN) was tested in the formulation of copper-free (Cu-free) friction mixtures, which are potentially interesting for brake pad manufacturing. Three formulations of friction composites were prepared starting from a common [...] Read more.
In this study, graphitic carbon nitride (g-C3N4, labelled as gCN) was tested in the formulation of copper-free (Cu-free) friction mixtures, which are potentially interesting for brake pad manufacturing. Three formulations of friction composites were prepared starting from a common Cu-free master batch: (i) without graphite, (ii) with graphite and (iii) with gCN. The mixtures were pressed in the form of pins by hot-press moulding. The friction-wear performance of the prepared pins was investigated using a pin-on-disc (PoD) test at room temperature (RT), high temperature (HT) (400 °C) and, again, at room temperature (H-RT). The values of the friction coefficient (µ) for the composites with gCN (or graphite) were as follows: (i) RT test, µRT = 0.52 (0.47); (ii) HT test, µHT = 0.37 (0.37); (iii) RT after the HT tests, µH-RT = 0.49 (0.39). With respect to wear resistance, the samples with graphite performed better than the samples without this solid lubricant. To the best of our knowledge, this is the first report regarding the evaluation of the role of gCN in friction composites designed for automotive brake lining applications. The results indicate the main role of gCN as a soft abrasive. Full article
(This article belongs to the Special Issue New Developments in Friction Brake Materials)
Show Figures

Graphical abstract

21 pages, 24561 KiB  
Article
Evaluation of Wear of Disc Brake Friction Linings and the Variability of the Friction Coefficient on the Basis of Vibroacoustic Signals
by Wojciech Sawczuk, Dariusz Ulbrich, Jakub Kowalczyk and Agnieszka Merkisz-Guranowska
Sensors 2021, 21(17), 5927; https://doi.org/10.3390/s21175927 - 3 Sep 2021
Cited by 18 | Viewed by 3603
Abstract
The article presents the results of friction and vibroacoustic tests of a railway disc brake carried out on a brake stand. The vibration signal generated by the friction linings provides information on their wear and offers evaluation of the braking process, i.e., changes [...] Read more.
The article presents the results of friction and vibroacoustic tests of a railway disc brake carried out on a brake stand. The vibration signal generated by the friction linings provides information on their wear and offers evaluation of the braking process, i.e., changes in the average friction coefficient. The algorithm presents simple regression linear and non-linear models for the thickness of the friction linings and the average coefficient of friction based on the effective value of vibration acceleration. The vibration acceleration signals were analyzed in the amplitude and frequency domains. In both cases, satisfactory values of the dynamics of changes above 6 dB were obtained. In the case of spectral analysis using a mid-band filter, more accurate models of the friction lining thickness and the average coefficient of friction were obtained. However, the spectral analysis does not allow the estimation of the lining thickness and the friction coefficient at low braking speeds, i.e., 50 and 80 km/h. The analysis of amplitudes leads to the determination of models in the entire braking speed range from 50 to 200 km/h, despite the lower accuracy compared to the model, based on the spectral analysis. The vibroacoustic literature presents methods of diagnosis of the wear of various machine elements such as bearings or friction linings, based on amplitude or frequency analysis of vibrations. These signal analysis methods have their limitations with regard to their scope of use and the accuracy of diagnosis. There are no cases of simultaneous use of different methods of analysis. This article presents the simultaneous application of the amplitude and frequency methods in the analysis of vibroacoustic signals generated by brake linings. Moreover, algorithms for assessing the wear of friction linings and the average coefficient of friction were presented. The algorithm enables determination of the time at which the friction linings should be replaced with new ones. The final algorithm analyzes the vibration acceleration signals using both amplitude analysis for low braking speeds, as well as spectral analysis for medium and high braking speeds. Full article
(This article belongs to the Special Issue Artificial Intelligence for Fault Diagnostics and Prognostics)
Show Figures

Figure 1

21 pages, 8763 KiB  
Article
Modeling the Average and Instantaneous Friction Coefficient of a Disc Brake on the Basis of Bench Tests
by Wojciech Sawczuk, Armando Miguel Rilo Cañás, Dariusz Ulbrich and Jakub Kowalczyk
Materials 2021, 14(16), 4766; https://doi.org/10.3390/ma14164766 - 23 Aug 2021
Cited by 12 | Viewed by 3649
Abstract
This article presents the results of tests conducted on the average and instantaneous friction coefficients of railway vehicle disc brakes. The tests were carried out independently of various states of wear on the friction linings and the brake disc. The requirements of the [...] Read more.
This article presents the results of tests conducted on the average and instantaneous friction coefficients of railway vehicle disc brakes. The tests were carried out independently of various states of wear on the friction linings and the brake disc. The requirements of the International Union of Railways (UIC) regarding the approval of brake linings for use were taken into account. Based on many years of research using a brake bench to test railway disc brakes, the authors developed multiple regression models for the average friction coefficient and fluctuations (tolerances) in the instantaneous friction coefficient and achieved 870 results. The models proposed three types of variables: the input braking parameters (speed, pressure, and mass to be braked), operational parameters (the wear on the friction linings and the brake disc), and design parameters (perforations in the form of holes on the disc surface). The above two models were validated on the basis of 384 brakes, and in subsequent stages a further evaluation was performed. The coefficients were determined to be, respectively, 0.99 for the model of the average friction coefficient and 0.71 for the model of tolerance (fluctuations) of the instantaneous friction coefficient. Full article
(This article belongs to the Special Issue Friction and Wear of Materials Surfaces)
Show Figures

Figure 1

12 pages, 1616 KiB  
Article
Tribological Performance and Thermal Stability of Nanorubber-Modified Polybenzoxazine Composites for Non-Asbestos Friction Materials
by Chanchira Jubsilp, Jakkrit Jantaramaha, Phattarin Mora and Sarawut Rimdusit
Polymers 2021, 13(15), 2435; https://doi.org/10.3390/polym13152435 - 23 Jul 2021
Cited by 19 | Viewed by 2756
Abstract
Asbestos-free friction composite based on ultrafine full-vulcanized acrylonitrile butadiene rubber particles (UFNBRPs)-modified polybenzoxazine was successfully developed. The UFNBRPs-modified polybenzoxazine friction composite was characterized for chemical, tribological, and mechanical properties as well as thermal stability. The UFNBRPs not only act as a filler to [...] Read more.
Asbestos-free friction composite based on ultrafine full-vulcanized acrylonitrile butadiene rubber particles (UFNBRPs)-modified polybenzoxazine was successfully developed. The UFNBRPs-modified polybenzoxazine friction composite was characterized for chemical, tribological, and mechanical properties as well as thermal stability. The UFNBRPs not only act as a filler to reduce noise in the friction composites due to their suitable viscoelastic behaviors but also play a key role in friction modifiers to enhance friction coefficient and wear resistance in the polybenzoxazine composites. The chemical bonding formation between UFNBRPs and polybenzoxazine can significantly improve friction, mechanical, and thermal properties of the friction composite. The outstanding tribological performance of the friction composite under 100–350 °C, i.e., friction coefficients and wear rates in a range of 0.36–0.43 and 0.13 × 10−4–0.29 × 10−4 mm3/Nm, respectively, was achieved. The high flexural strength and modulus of the friction composite, i.e., 61 MPa and 6.4 GPa, respectively, were obtained. The friction composite also showed high thermal stability, such as 410 °C for degradation temperature and 215 °C for glass transition temperature. The results indicated that the obtained UFNBRPs-modified polybenzoxazine friction composite meets the industrial standard of brake linings and pads for automobiles; therefore, the UFNBRPs-modified polybenzoxazine friction composite can effectively be used as a replacement for asbestos-based friction materials. Full article
(This article belongs to the Special Issue Polymer Composites for Structural Applications)
Show Figures

Graphical abstract

20 pages, 7546 KiB  
Article
Pressure Estimation Based on Vehicle Dynamics Considering the Evolution of the Brake Linings’ Coefficient of Friction
by Biaofei Shi, Lu Xiong and Zhuoping Yu
Actuators 2021, 10(4), 76; https://doi.org/10.3390/act10040076 - 8 Apr 2021
Cited by 18 | Viewed by 4495
Abstract
To mitigate the issue of low accuracy and poor robustness of the master cylinder pressure estimation (MCPE) of the electro-hydraulic brake system (EHB) by adopting EHB’s own information, a MCPE algorithm based on vehicle information considering the evolution of the brake linings’ coefficient [...] Read more.
To mitigate the issue of low accuracy and poor robustness of the master cylinder pressure estimation (MCPE) of the electro-hydraulic brake system (EHB) by adopting EHB’s own information, a MCPE algorithm based on vehicle information considering the evolution of the brake linings’ coefficient of friction (BLCF) is proposed. First, the MCPE algorithm was derived combining the vehicle longitudinal dynamics and the wheel dynamics, in which the inertial measurement unit (IMU) was adopted to adapt the MCPE algorithm to road slope change. In order to estimate the brake pressure accurately, the driving resistance of the vehicle was obtained through a vehicle test under coasting condition. After that, with the active braking function of EHB, the evolution of the BLCF was acquired through extensive real vehicle test under different initial temperatures, different initial vehicle speeds, and different brake pressures. According to the test results, a revised model of the BLCF is proposed. Finally, the performance of the MCPE based on the revised BLCF model was compared with that based on a fixed BLCF model. Vehicle test demonstrates that the former MCPE algorithm is not only more accurate at low vehicle speed than the later, but also robust to road slope change. Full article
(This article belongs to the Special Issue Actuators for Intelligent Electric Vehicles)
Show Figures

Figure 1

23 pages, 2927 KiB  
Review
Survey on Modelling and Techniques for Friction Estimation in Automotive Brakes
by Vincenzo Ricciardi, Klaus Augsburg, Sebastian Gramstat, Viktor Schreiber and Valentin Ivanov
Appl. Sci. 2017, 7(9), 873; https://doi.org/10.3390/app7090873 - 25 Aug 2017
Cited by 31 | Viewed by 6411
Abstract
The increased use of disc brakes in passenger cars has led the research world to focus on the prediction of brake performance and wear under different working conditions. A proper model of the brake linings’ coefficient of friction (BLCF) is important to monitor [...] Read more.
The increased use of disc brakes in passenger cars has led the research world to focus on the prediction of brake performance and wear under different working conditions. A proper model of the brake linings’ coefficient of friction (BLCF) is important to monitor the brake operation and increase the performance of control systems such as ABS, TC and ESP by supplying an accurate estimate of the brake torque. The literature of the last decades is replete with semi-empirical and analytical friction models whose derivation comes from significant research that has been conducted into the direction of friction modelling of pin-disc couplings. On the contrary, just a few models have been developed and used for the prediction of the automotive BLCF without obtaining satisfactory results. The present work aims at collecting the current state of art of the estimation techniques for the BLCF, with special attention to the models for automotive brakes. Moreover, the work proposes a classification of the several existing approaches and discusses the relative pro and cons. Finally, based on evidence of the limitations of the model-based approach and the potentialities of the neural networks, the authors propose a new state observer for BLCF estimation as a promising solution among the supporting tools of the control engineering. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop