Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = brain-homing peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1664 KiB  
Article
Depletion of IGFALS Serum Level up to 3 Months After Cardiac Surgery, with Exploration of Potential Relationships to Surrogates of Organ Failures and Clinical Outcomes
by Krzysztof Laudanski, Mohamed A. Mahmoud, Hossam Gad and Daniel A. Diedrich
Curr. Issues Mol. Biol. 2025, 47(8), 581; https://doi.org/10.3390/cimb47080581 - 23 Jul 2025
Viewed by 242
Abstract
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients [...] Read more.
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients undergoing elective cardiac surgery with implementation of cardiopulmonary bypass had their serum isolated at baseline, 24 h, seven days, and three months postoperatively to assess serum concentrations of IGFALS and insulin growth factor 1 (IGF-1). Markers of perioperative injury included troponin I (TnI), high-mobility group box 1 (HMGB-1), and heat shock protein 60 (Hsp-60). Inflammatory status was assessed via interleukin-6 (IL-6) and interleukin-8 (IL-8). Additionally, we measured in vitro cytokine production to viral stimulation of whole blood and monocytes. Surrogates of neuronal distress included neurofilament light chain (NF-L), total tau (τ), phosphorylated tau at threonine 181 (τp181), and amyloid β40 and β42. Renal impairment was defined by RIFLE criteria. Cardiac dysfunction was denoted by serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. Serum IGFALS levels declined significantly after surgery and remained depressed even at 3 months. Administration of acetaminophen and acetylsalicylic acid differentiated IGFALS levels at the 24 h postoperatively. Serum IGFALS 24 h post-operatively correlated with production of cytokines by leukocytes after in vitro viral stimulation. Serum amyloid-β1-42 was significantly associated with IGFALS at baseline and 24 h post-surgery Patients discharged home had higher IGFALS levels at 28 days and 3 months than those discharged to healthcare facilities or who died. These findings suggest that IGFALS may serve as a prognostic biomarker for recovery trajectory and postoperative outcomes in cardiac surgery patients. Full article
(This article belongs to the Special Issue The Role of Neuroinflammation in Neurodegenerative Diseases)
Show Figures

Figure 1

33 pages, 1062 KiB  
Review
Engineered Exosomes as Smart Drug Carriers: Overcoming Biological Barriers in CNS and Cancer Therapy
by Tanvi Premchandani, Amol Tatode, Jayshree Taksande, Milind Umekar, Mohammad Qutub, Ujban Md Hussain and Priyanka Singanwad
Drugs Drug Candidates 2025, 4(2), 19; https://doi.org/10.3390/ddc4020019 - 24 Apr 2025
Cited by 6 | Viewed by 3677
Abstract
Engineered exosomes have emerged as transformative drug carriers, uniquely equipped to overcome biological barriers in central nervous system (CNS) disorders and cancer therapy. These natural extracellular vesicles, derived from cell membranes, offer inherent biocompatibility, low immunogenicity, and the ability to traverse physiological obstacles [...] Read more.
Engineered exosomes have emerged as transformative drug carriers, uniquely equipped to overcome biological barriers in central nervous system (CNS) disorders and cancer therapy. These natural extracellular vesicles, derived from cell membranes, offer inherent biocompatibility, low immunogenicity, and the ability to traverse physiological obstacles such as the blood–brain barrier (BBB) and dense tumor stroma. Recent advances in exosome engineering—including surface modification (e.g., ligand conjugation for receptor-mediated targeting) and cargo loading (siRNA, CRISPR-Cas systems, and chemotherapeutics)—have enhanced their precision and therapeutic utility. For CNS delivery, exosomes functionalized with brain-homing peptides (e.g., RVG or TfR ligands) have enabled the efficient transport of neuroprotective agents or gene-editing tools to treat Alzheimer’s disease or glioblastoma. In oncology, engineered exosomes loaded with tumor-suppressive miRNAs or immune checkpoint inhibitors exploit tumor microenvironment (TME) features, such as acidity or enzyme overexpression, for spatially controlled drug release. Furthermore, hybrid exosome–liposome systems and exosome–biomaterial composites are being explored to improve payload capacity and stability. Despite progress, challenges persist in scalable production, batch consistency, and regulatory standardization. This review critically evaluates engineering strategies, preclinical success, and translational hurdles while proposing innovations such as AI-driven exosome design and patient-derived exosome platforms for personalized therapy. By bridging nanotechnology and biomedicine, engineered exosomes can represent a paradigm shift in targeted drug delivery, offering safer and more effective solutions for historically intractable diseases. Full article
Show Figures

Figure 1

14 pages, 1914 KiB  
Article
Brain-Homing Peptide Expression on the Membrane Enhances the Delivery of Exosomes to Neural Cells and Tissue
by Jonhoi Smith, Melvin Field and Kiminobu Sugaya
Neuroglia 2025, 6(1), 3; https://doi.org/10.3390/neuroglia6010003 - 4 Jan 2025
Cited by 1 | Viewed by 1266
Abstract
Background/Objectives: Glioblastoma (GBM), a highly aggressive grade IV astrocytoma, poses a major therapeutic challenge due to the resistance of cancer stem cells (CSCs) existing within its cell population to the conventional therapies. Recently, we reported that RNA interference targeting CSC protection mechanism significantly [...] Read more.
Background/Objectives: Glioblastoma (GBM), a highly aggressive grade IV astrocytoma, poses a major therapeutic challenge due to the resistance of cancer stem cells (CSCs) existing within its cell population to the conventional therapies. Recently, we reported that RNA interference targeting CSC protection mechanism significantly improved therapeutic efficacy. However, challenges remain, including limited transfection efficiency in neural cells and the difficulty of crossing the blood–brain barrier (BBB). Methods: In this study, we investigated the potential of exosome-mediated delivery of therapeutic cargo to GBM cells by engineering the exosomes to carry green fluorescent protein (GFP) and expressing brain-homing peptide (BHP) on their surface, which has high affinity to the neural cells. Results: We found that BHP-modified exosomes doubled GFP delivery efficacy from 20% to 40%, outperforming traditional transfection methods like lipofection in vitro. In vivo, BHP-modified exosomes demonstrated an ability to cross the BBB and targeted cargo delivery to brain regions following intranasal and subcutaneous administration. Conclusions: These results underscore the potential of engineered exosomes for efficient cargo delivery to enhance therapeutic efficacy against brain tumors and suggest novel avenues for delivering biomolecules to the brain in the treatment of neurological disorders. Full article
Show Figures

Figure 1

18 pages, 2003 KiB  
Review
Systematic Review of Peptide CAQK: Properties, Applications, and Outcomes
by Jose A. Castillo, Michael Nhien Le, Amanda Ratcliff, Khadija Soufi, Kuanwei Huang, Sina Vatoofy, Arash Ghaffari-Rafi, Samuel Emerson, Elizabeth Reynolds, Christopher Pivetti, Kaitlin Clark, Allan Martin, Richard Price, Kee Kim, Aijun Wang and Rachel Russo
Int. J. Mol. Sci. 2024, 25(20), 10990; https://doi.org/10.3390/ijms252010990 - 12 Oct 2024
Viewed by 1536
Abstract
Many central nervous system (CNS) disorders lack approved treatment options. Previous research demonstrated that peptide CAQK can bind to chondroitin sulfate proteoglycans (CSPGs) in the extracellular matrix of the CNS. In vivo studies have investigated CAQK conjugated to nanoparticles containing therapeutic agents with [...] Read more.
Many central nervous system (CNS) disorders lack approved treatment options. Previous research demonstrated that peptide CAQK can bind to chondroitin sulfate proteoglycans (CSPGs) in the extracellular matrix of the CNS. In vivo studies have investigated CAQK conjugated to nanoparticles containing therapeutic agents with varying methodologies/outcomes. This paper presents the first systematic review assessing its properties, applications, and outcomes secondary to its use. Following PRISMA guidelines, a comprehensive search was performed across multiple databases. Studies utilizing CAQK as a therapeutic agent/homing molecule in animal/human models were selected. Sixteen studies met the inclusion criteria. Mice and rats were the predominant animal models. All studies except one used CAQK to deliver a therapeutic agent. The reviewed studies mostly included models of brain and spinal cord injuries. Most studies had intravenous administration of CAQK. All studies demonstrated various benefits and that CAQK conjugation facilitated localization to target tissues. No studies directly evaluated the effects of CAQK alone. The data are limited by the heterogeneity in study methodologies and the lack of direct comparison between CAQK and conjugated agents. Overall, these findings present CAQK utilization to deliver a therapeutic agent as a promising targeting strategy in the management of disorders where CSPGs are upregulated. Full article
(This article belongs to the Special Issue Innovative Molecular Strategies in Biomedicine)
Show Figures

Figure 1

15 pages, 1830 KiB  
Article
Early Cardiac Evaluation, Abnormal Test Results, and Associations with Outcomes in Patients with Acute Brain Injury Admitted to a Neurocritical Care Unit
by Abhijit V. Lele, Jeffery Liu, Thitikan Kunapaisal, Nophanan Chaikittisilpa, Taniga Kiatchai, Michael K. Meno, Osayd R. Assad, Julie Pham, Christine T. Fong, Andrew M. Walters, Koichiro Nandate, Tumul Chowdhury, Vijay Krishnamoorthy, Monica S. Vavilala and Younghoon Kwon
J. Clin. Med. 2024, 13(9), 2526; https://doi.org/10.3390/jcm13092526 - 25 Apr 2024
Viewed by 2248
Abstract
Background: to examine factors associated with cardiac evaluation and associations between cardiac test abnormalities and clinical outcomes in patients with acute brain injury (ABI) due to acute ischemic stroke (AIS), spontaneous subarachnoid hemorrhage (SAH), spontaneous intracerebral hemorrhage (sICH), and traumatic brain injury (TBI) [...] Read more.
Background: to examine factors associated with cardiac evaluation and associations between cardiac test abnormalities and clinical outcomes in patients with acute brain injury (ABI) due to acute ischemic stroke (AIS), spontaneous subarachnoid hemorrhage (SAH), spontaneous intracerebral hemorrhage (sICH), and traumatic brain injury (TBI) requiring neurocritical care. Methods: In a cohort of patients ≥18 years, we examined the utilization of electrocardiography (ECG), beta-natriuretic peptide (BNP), cardiac troponin (cTnI), and transthoracic echocardiography (TTE). We investigated the association between cTnI, BNP, sex-adjusted prolonged QTc interval, low ejection fraction (EF < 40%), all-cause mortality, death by neurologic criteria (DNC), transition to comfort measures only (CMO), and hospital discharge to home using univariable and multivariable analysis (adjusted for age, sex, race/ethnicity, insurance carrier, pre-admission cardiac disorder, ABI type, admission Glasgow Coma Scale Score, mechanical ventilation, and intracranial pressure [ICP] monitoring). Results: The final sample comprised 11,822 patients: AIS (46.7%), sICH (18.5%), SAH (14.8%), and TBI (20.0%). A total of 63% (n = 7472) received cardiac workup, which increased over nine years (p < 0.001). A cardiac investigation was associated with increased age, male sex (aOR 1.16 [1.07, 1.27]), non-white ethnicity (aOR), non-commercial insurance (aOR 1.21 [1.09, 1.33]), pre-admission cardiac disorder (aOR 1.21 [1.09, 1.34]), mechanical ventilation (aOR1.78 [1.57, 2.02]) and ICP monitoring (aOR1.68 [1.49, 1.89]). Compared to AIS, sICH (aOR 0.25 [0.22, 0.29]), SAH (aOR 0.36 [0.30, 0.43]), and TBI (aOR 0.19 [0.17, 0.24]) patients were less likely to receive cardiac investigation. Patients with troponin 25th–50th quartile (aOR 1.65 [1.10–2.47]), troponin 50th–75th quartile (aOR 1.79 [1.22–2.63]), troponin >75th quartile (aOR 2.18 [1.49–3.17]), BNP 50th-75th quartile (aOR 2.86 [1.28–6.40]), BNP >75th quartile (aOR 4.54 [2.09–9.85]), prolonged QTc (aOR 3.41 [2.28; 5.30]), and EF < 40% (aOR 2.47 [1.07; 5.14]) were more likely to be DNC. Patients with troponin 50th–75th quartile (aOR 1.77 [1.14–2.73]), troponin >75th quartile (aOR 1.81 [1.18–2.78]), and prolonged QTc (aOR 1.71 [1.39; 2.12]) were more likely to be associated with a transition to CMO. Patients with prolonged QTc (aOR 0.66 [0.58; 0.76]) were less likely to be discharged home. Conclusions: This large, single-center study demonstrates low rates of cardiac evaluations in TBI, SAH, and sICH compared to AIS. However, there are strong associations between electrocardiography, biomarkers of cardiac injury and heart failure, and echocardiography findings on clinical outcomes in patients with ABI. Findings need validation in a multicenter cohort. Full article
(This article belongs to the Special Issue Clinical Advances in Traumatic Brain Injury)
Show Figures

Figure 1

18 pages, 1129 KiB  
Review
Interaction of the Gut Microbiome and Immunity in Multiple Sclerosis: Impact of Diet and Immune Therapy
by Sudhir Kumar Yadav, Kouichi Ito and Suhayl Dhib-Jalbut
Int. J. Mol. Sci. 2023, 24(19), 14756; https://doi.org/10.3390/ijms241914756 - 29 Sep 2023
Cited by 13 | Viewed by 4231
Abstract
The bidirectional communication between the gut and central nervous system (CNS) through microbiota is known as the microbiota–gut–brain axis. The brain, through the enteric neural innervation and the vagus nerve, influences the gut physiological activities (motility, mucin, and peptide secretion), as well as [...] Read more.
The bidirectional communication between the gut and central nervous system (CNS) through microbiota is known as the microbiota–gut–brain axis. The brain, through the enteric neural innervation and the vagus nerve, influences the gut physiological activities (motility, mucin, and peptide secretion), as well as the development of the mucosal immune system. Conversely, the gut can influence the CNS via intestinal microbiota, its metabolites, and gut-homing immune cells. Growing evidence suggests that gut immunity is critically involved in gut–brain communication during health and diseases, including multiple sclerosis (MS). The gut microbiota can influence the development and function of gut immunity, and conversely, the innate and adaptive mucosal immunity can influence microbiota composition. Gut and systemic immunity, along with gut microbiota, are perturbed in MS. Diet and disease-modifying therapies (DMTs) can affect the composition of the gut microbial community, leading to changes in gut and peripheral immunity, which ultimately affects MS. A high-fat diet is highly associated with gut dysbiosis-mediated inflammation and intestinal permeability, while a high-fiber diet/short-chain fatty acids (SCFAs) can promote the development of Foxp3 Tregs and improvement in intestinal barrier function, which subsequently suppress CNS autoimmunity in the animal model of MS (experimental autoimmune encephalomyelitis or EAE). This review will address the role of gut immunity and its modulation by diet and DMTs via gut microbiota during MS pathophysiology. Full article
(This article belongs to the Special Issue Molecular Mechanism in Multiple Sclerosis and Related Disorders)
Show Figures

Figure 1

27 pages, 2651 KiB  
Review
Cell-Penetrating and Targeted Peptides Delivery Systems as Potential Pharmaceutical Carriers for Enhanced Delivery across the Blood–Brain Barrier (BBB)
by Soma Mondal Ghorai, Auroni Deep, Devanshi Magoo, Chetna Gupta and Nikesh Gupta
Pharmaceutics 2023, 15(7), 1999; https://doi.org/10.3390/pharmaceutics15071999 - 21 Jul 2023
Cited by 49 | Viewed by 8856
Abstract
Among the challenges to the 21st-century health care industry, one that demands special mention is the transport of drugs/active pharmaceutical agents across the blood–brain barrier (BBB). The epithelial-like tight junctions within the brain capillary endothelium hinder the uptake of most pharmaceutical agents. With [...] Read more.
Among the challenges to the 21st-century health care industry, one that demands special mention is the transport of drugs/active pharmaceutical agents across the blood–brain barrier (BBB). The epithelial-like tight junctions within the brain capillary endothelium hinder the uptake of most pharmaceutical agents. With an aim to understand more deeply the intricacies of cell-penetrating and targeted peptides as a powerful tool for desirable biological activity, we provide a critical review of both CPP and homing/targeted peptides as intracellular drug delivery agents, especially across the blood–brain barrier (BBB). Two main peptides have been discussed to understand intracellular drug delivery; first is the cell-penetrating peptides (CPPs) for the targeted delivery of compounds of interest (primarily peptides and nucleic acids) and second is the family of homing peptides, which specifically targets cells/tissues based on their overexpression of tumour-specific markers and are thus at the heart of cancer research. These small, amphipathic molecules demonstrate specific physical and chemical modifications aimed at increased ease of cellular internalisation. Because only a limited number of drug molecules can bypass the blood–brain barrier by free diffusion, it is essential to explore all aspects of CPPs that can be exploited for crossing this barrier. Considering siRNAs that can be designed against any target RNA, marking such molecules with high therapeutic potential, we present a synopsis of the studies on synthetic siRNA-based therapeutics using CPPs and homing peptides drugs that can emerge as potential drug-delivery systems as an upcoming requirement in the world of pharma- and nutraceuticals. Full article
Show Figures

Graphical abstract

30 pages, 1756 KiB  
Review
The Role of miRNAs in Dexmedetomidine’s Neuroprotective Effects against Brain Disorders
by Codrin-Constantin Burlacu, Maria-Adriana Neag, Andrei-Otto Mitre, Alexandru-Constantin Sirbu, Andrei-Vlad Badulescu and Anca-Dana Buzoianu
Int. J. Mol. Sci. 2022, 23(10), 5452; https://doi.org/10.3390/ijms23105452 - 13 May 2022
Cited by 25 | Viewed by 6554
Abstract
There are limited neuroprotective strategies for various central nervous system conditions in which fast and sustained management is essential. Neuroprotection-based therapeutics have become an intensively researched topic in the neuroscience field, with multiple novel promising agents, from natural products to mesenchymal stem cells, [...] Read more.
There are limited neuroprotective strategies for various central nervous system conditions in which fast and sustained management is essential. Neuroprotection-based therapeutics have become an intensively researched topic in the neuroscience field, with multiple novel promising agents, from natural products to mesenchymal stem cells, homing peptides, and nanoparticles-mediated agents, all aiming to significantly provide neuroprotection in experimental and clinical studies. Dexmedetomidine (DEX), an α2 agonist commonly used as an anesthetic adjuvant for sedation and as an opioid-sparing medication, stands out in this context due to its well-established neuroprotective effects. Emerging evidence from preclinical and clinical studies suggested that DEX could be used to protect against cerebral ischemia, traumatic brain injury (TBI), spinal cord injury, neurodegenerative diseases, and postoperative cognitive disorders. MicroRNAs (miRNAs) regulate gene expression at a post-transcriptional level, inhibiting the translation of mRNA into functional proteins. In vivo and in vitro studies deciphered brain-related miRNAs and dysregulated miRNA profiles after several brain disorders, including TBI, ischemic stroke, Alzheimer’s disease, and multiple sclerosis, providing emerging new perspectives in neuroprotective therapy by modulating these miRNAs. Experimental studies revealed that some of the neuroprotective effects of DEX are mediated by various miRNAs, counteracting multiple mechanisms in several disease models, such as lipopolysaccharides induced neuroinflammation, β-amyloid induced dysfunction, brain ischemic-reperfusion injury, and anesthesia-induced neurotoxicity models. This review aims to outline the neuroprotective mechanisms of DEX in brain disorders by modulating miRNAs. We address the neuroprotective effects of DEX by targeting miRNAs in modulating ischemic brain injury, ameliorating the neurotoxicity of anesthetics, reducing postoperative cognitive dysfunction, and improving the effects of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pharmacological Targeting of Neuroprotection)
Show Figures

Figure 1

17 pages, 16683 KiB  
Article
A Tumor-Homing Peptide Platform Enhances Drug Solubility, Improves Blood–Brain Barrier Permeability and Targets Glioblastoma
by Choi-Fong Cho, Charlotte E. Farquhar, Colin M. Fadzen, Benjamin Scott, Pei Zhuang, Niklas von Spreckelsen, Andrei Loas, Nina Hartrampf, Bradley L. Pentelute and Sean E. Lawler
Cancers 2022, 14(9), 2207; https://doi.org/10.3390/cancers14092207 - 28 Apr 2022
Cited by 16 | Viewed by 4978
Abstract
Background: Glioblastoma (GBM) is the most common and deadliest malignant primary brain tumor, contributing significant morbidity and mortality among patients. As current standard-of-care demonstrates limited success, the development of new efficacious GBM therapeutics is urgently needed. Major challenges in advancing GBM chemotherapy include [...] Read more.
Background: Glioblastoma (GBM) is the most common and deadliest malignant primary brain tumor, contributing significant morbidity and mortality among patients. As current standard-of-care demonstrates limited success, the development of new efficacious GBM therapeutics is urgently needed. Major challenges in advancing GBM chemotherapy include poor bioavailability, lack of tumor selectivity leading to undesired side effects, poor permeability across the blood–brain barrier (BBB), and extensive intratumoral heterogeneity. Methods: We have previously identified a small, soluble peptide (BTP-7) that is able to cross the BBB and target the human GBM extracellular matrix (ECM). Here, we covalently attached BTP-7 to an insoluble anti-cancer drug, camptothecin (CPT). Results: We demonstrate that conjugation of BTP-7 to CPT improves drug solubility in aqueous solution, retains drug efficacy against patient-derived GBM stem cells (GSC), enhances BBB permeability, and enables therapeutic targeting to intracranial GBM, leading to higher toxicity in GBM cells compared to normal brain tissues, and ultimately prolongs survival in mice bearing intracranial patient-derived GBM xenograft. Conclusion: BTP-7 is a new modality that opens the door to possibilities for GBM-targeted therapeutic approaches. Full article
(This article belongs to the Special Issue New Approaches with Precision Medicine in Brain Tumors)
Show Figures

Figure 1

16 pages, 3314 KiB  
Review
Protease-Resistant Peptides for Targeting and Intracellular Delivery of Therapeutics
by Maria C. Lucana, Yolanda Arruga, Emilia Petrachi, Albert Roig, Roberta Lucchi and Benjamí Oller-Salvia
Pharmaceutics 2021, 13(12), 2065; https://doi.org/10.3390/pharmaceutics13122065 - 2 Dec 2021
Cited by 43 | Viewed by 5438
Abstract
Peptides show high promise in the targeting and intracellular delivery of next-generation bio- and nano-therapeutics. However, the proteolytic susceptibility of peptides is one of the major limitations of their activity in biological environments. Numerous strategies have been devised to chemically enhance the resistance [...] Read more.
Peptides show high promise in the targeting and intracellular delivery of next-generation bio- and nano-therapeutics. However, the proteolytic susceptibility of peptides is one of the major limitations of their activity in biological environments. Numerous strategies have been devised to chemically enhance the resistance of peptides to proteolysis, ranging from N- and C-termini protection to cyclization, and including backbone modification, incorporation of amino acids with non-canonical side chains and conjugation. Since conjugation of nanocarriers or other cargoes to peptides for targeting and cell penetration may already provide some degree of shielding, the question arises about the relevance of using protease-resistant sequences for these applications. Aiming to answer this question, here we provide a critical review on protease-resistant targeting peptides and cell-penetrating peptides (CPPs). Two main approaches have been used on these classes of peptides: enantio/retro-enantio isomerization and cyclization. On one hand, enantio/retro-enantio isomerization has been shown to provide a clear enhancement in peptide efficiency with respect to parent L-amino acid peptides, especially when applied to peptides for drug delivery to the brain. On the other hand, cyclization also clearly increases peptide transport capacity, although contribution from enhanced protease resistance or affinity is often not dissected. Overall, we conclude that although conjugation often offers some degree of protection to proteolysis in targeting peptides and CPPs, modification of peptide sequences to further enhance protease resistance can greatly increase homing and transport efficiency. Full article
(This article belongs to the Special Issue Chemically Enhanced Peptide and Protein Therapeutics)
Show Figures

Figure 1

10 pages, 612 KiB  
Article
Outcome Predictors and Safety of Home Dobutamine Intravenous Infusion in End Stage Heart Failure Patients
by Antoine Jobbé-Duval, Thomas Bochaton, Guillaume Baudry, Eric Bonnefoy-Cudraz, Elisabeth Hugon-Vallet, Matteo Pozzi, Jean-Francois Obadia, Danka Tomasevic, Camille Amaz, Nathan Mewton and Laurent Sebbag
J. Clin. Med. 2021, 10(12), 2571; https://doi.org/10.3390/jcm10122571 - 10 Jun 2021
Cited by 2 | Viewed by 3686
Abstract
Patients in end-stage heart failure can experiment cardiogenic shock and may not be weanable from dobutamine. The fate of these patients is a challenge for doctors, patients, family, and the institution. Dobutamine use at home can be a solution. The aim of the [...] Read more.
Patients in end-stage heart failure can experiment cardiogenic shock and may not be weanable from dobutamine. The fate of these patients is a challenge for doctors, patients, family, and the institution. Dobutamine use at home can be a solution. The aim of the present study was to assess the outcome, biological predictors, and safety of dobutamine use at home in dobutamine-dependent patients. All consecutive dobutamine-dependent patients discharged with continuous home intravenous dobutamine, from a single tertiary center between February 2014 and November 2019, were retrospectively analyzed. A total of 19 patients (age 65 ± 10 years) were followed for one year. At one-year, the survival rate was 32%, (6/19). Five (26%) patients had an adverse event related to the intravenous catheter. In a multivariate logistic regression analysis, the combination of a glomerular filtration rate >60 mL/min and a brain natriuretic peptide level <1000 ng/L, were highly predictive of one-year survival (HR = 10.87, IC95% (5.78–36.44), p < 0.001). Management of dobutamine-unweanable patients after cardiogenic shock may involve dobutamine at home to permit a home return. This strategy allows a significant survival and few readmissions, and, if eligible, access to surgical strategies, such as heart transplantation. Simple biological markers at discharge can identify severe patients to refer to palliative care and good responders. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

3 pages, 171 KiB  
Editorial
Current Therapeutic Strategies for Glioblastoma
by Julien Rossignol, Bhairavi Srinageshwar and Gary L. Dunbar
Brain Sci. 2020, 10(1), 15; https://doi.org/10.3390/brainsci10010015 - 26 Dec 2019
Cited by 8 | Viewed by 4464
Abstract
Glioblastomas (GB) are grade 4 brain tumors, one of the most aggressive forms of brain cancer found in humans. Although current treatments for GB are largely ineffective, new alternate approaches, beyond standard chemo- or radiation therapies have shown promising results in both pre-clinical [...] Read more.
Glioblastomas (GB) are grade 4 brain tumors, one of the most aggressive forms of brain cancer found in humans. Although current treatments for GB are largely ineffective, new alternate approaches, beyond standard chemo- or radiation therapies have shown promising results in both pre-clinical and clinical settings. Some of these approaches include stem cell therapy, new pharmaceuticals and nutraceuticals, and the use of tumor specific peptides or GB-targeted antibodies and immune-based therapies. A common limitation in the efficacy of these treatments is the inability of these therapeutic agents to readily cross the blood–brain barrier (BBB) to reach the tumor site. Therefore, many strategies are being developed to achieve targeted delivery of drugs across the BBB so that they can kill the cancer cells, while sparing healthy tissue. One of the most promising new approaches involves the use of nanoparticles that can carry therapeutic drugs and genes across the BBB and home in on the GB tumor site. Full article
Back to TopTop