Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = bovine rhinitis A virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 3006 KiB  
Communication
Bovine Rhinitis B Virus Variant as the Putative Cause of Bronchitis in Goat Kids
by Andrew Noel, Jianqiang Zhang, Huigang Shen, Anugrah Saxena, Jennifer Groeltz-Thrush, Ganwu Li and Michael C. Rahe
Viruses 2024, 16(7), 1023; https://doi.org/10.3390/v16071023 - 25 Jun 2024
Viewed by 1421
Abstract
A diagnostic investigation into an outbreak of fatal respiratory disease among young goats in Iowa, USA revealed bronchitis lesions of unknown etiology and secondary bacterial bronchopneumonia. Hypothesis-free metagenomics identified a previously unreported picornavirus (USA/IA26017/2023), and further phylogenetic analysis classified USA/IA26017/2023 as an aphthovirus [...] Read more.
A diagnostic investigation into an outbreak of fatal respiratory disease among young goats in Iowa, USA revealed bronchitis lesions of unknown etiology and secondary bacterial bronchopneumonia. Hypothesis-free metagenomics identified a previously unreported picornavirus (USA/IA26017/2023), and further phylogenetic analysis classified USA/IA26017/2023 as an aphthovirus related to bovine rhinitis B virus. Viral nucleic acid was localized to lesions of bronchitis using in situ hybridization. This marks the first report of a picornavirus putatively causing respiratory disease in goats and highlights the potential for cross-species transmission of aphthoviruses. Full article
(This article belongs to the Special Issue Animal Virus Discovery and Genetic Diversity)
Show Figures

Figure 1

21 pages, 1912 KiB  
Article
Characterisation of the Upper Respiratory Tract Virome of Feedlot Cattle and Its Association with Bovine Respiratory Disease
by Rebecca K. Ambrose, Claudia Blakebrough-Hall, Jennifer L. Gravel, Luciano A. Gonzalez and Timothy J. Mahony
Viruses 2023, 15(2), 455; https://doi.org/10.3390/v15020455 - 6 Feb 2023
Cited by 8 | Viewed by 2827
Abstract
Bovine respiratory disease (BRD) is a major health problem within the global cattle industry. This disease has a complex aetiology, with viruses playing an integral role. In this study, metagenomics was used to sequence viral nucleic acids in the nasal swabs of BRD-affected [...] Read more.
Bovine respiratory disease (BRD) is a major health problem within the global cattle industry. This disease has a complex aetiology, with viruses playing an integral role. In this study, metagenomics was used to sequence viral nucleic acids in the nasal swabs of BRD-affected cattle. The viruses detected included those that are well known for their association with BRD in Australia (bovine viral diarrhoea virus 1), as well as viruses known to be present but not fully characterised (bovine coronavirus) and viruses that have not been reported in BRD-affected cattle in Australia (bovine rhinitis, bovine influenza D, and bovine nidovirus). The nasal swabs from a case–control study were subsequently tested for 10 viruses, and the presence of at least one virus was found to be significantly associated with BRD. Some of the more recently detected viruses had inconsistent associations with BRD. Full genome sequences for bovine coronavirus, a virus increasingly associated with BRD, and bovine nidovirus were completed. Both viruses belong to the Coronaviridae family, which are frequently associated with disease in mammals. This study has provided greater insights into the viral pathogens associated with BRD and highlighted the need for further studies to more precisely elucidate the roles viruses play in BRD. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

10 pages, 1449 KiB  
Article
Detection and Genomic Characterization of Bovine Rhinitis Virus in China
by Yuxing Zhou, Xi Chen, Cheng Tang and Hua Yue
Animals 2023, 13(2), 312; https://doi.org/10.3390/ani13020312 - 16 Jan 2023
Cited by 6 | Viewed by 3155
Abstract
Bovine rhinitis virus (BRV) is an etiological agent of bovine respiratory disease complex (BRDC) and can be divided into two genotypes—bovine rhinitis A virus (BRAV) and bovine rhinitis B virus (BRBV). However, knowledge about the prevalence and molecular information of BRV in China [...] Read more.
Bovine rhinitis virus (BRV) is an etiological agent of bovine respiratory disease complex (BRDC) and can be divided into two genotypes—bovine rhinitis A virus (BRAV) and bovine rhinitis B virus (BRBV). However, knowledge about the prevalence and molecular information of BRV in China is still limited. In this study, 163 deep nasal swabs collected from bovines with BRDC syndrome on 16 farms across nine provinces of China were tested for BRAV and BRBV by a duplex real-time RT-PCR assay. The results showed that 28.22% (46/163) of the samples were BRV-positive, and the positive rates were 22.09% (36/163) for BRAV and 9.2% (15/163) for BRBV. The co-circulation of both BRV genotypes was observed on two farms. Furthermore, five near-complete BRV genomes, including three BRAVs and two BRBVs, were obtained. The phylogenetic analysis showed that the three obtained BRAVs were phylogenetically independent, while the two BRBVs exhibited significant genetic heterogeneity. Recombination analysis revealed that three BRAVs and one BRBV strain obtained in this study were recombinants. The present study confirmed the presence and prevalence of BRAV in China, and it found that both types of BRV are circulating in beef cattle, which contributes to a better understanding of the prevalence and molecular characteristics of BRV. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

18 pages, 2247 KiB  
Article
The Stem-Loop I of Senecavirus A IRES Is Essential for Cap-Independent Translation Activity and Virus Recovery
by Nana Wang, Haiwei Wang, Jiabao Shi, Chen Li, Xinran Liu, Junhao Fan, Chao Sun, Craig E. Cameron, Hong Qi and Li Yu
Viruses 2021, 13(11), 2159; https://doi.org/10.3390/v13112159 - 26 Oct 2021
Cited by 2 | Viewed by 3291
Abstract
Senecavirus A (SVA) is a picornavirus that causes vesicular disease in swine and the only member of the Senecavirus genus. Like in all members of Picornaviridae, the 5′ untranslated region (5’UTR) of SVA contains an internal ribosome entry site (IRES) that initiates [...] Read more.
Senecavirus A (SVA) is a picornavirus that causes vesicular disease in swine and the only member of the Senecavirus genus. Like in all members of Picornaviridae, the 5′ untranslated region (5’UTR) of SVA contains an internal ribosome entry site (IRES) that initiates cap-independent translation. For example, the replacement of the IRES of foot-and-mouth disease virus (FMDV) with its relative bovine rhinitis B virus (BRBV) affects the viral translation efficiency and virulence. Structurally, the IRES from SVA resembles that of hepatitis C virus (HCV), a flavivirus. Given the roles of the IRES in cap-independent translation for picornaviruses, we sought to functionally characterize the IRES of this genus by studying chimeric viruses generated by exchanging the native SVA IRES with that of HCV either entirely or individual domains. First, the results showed that a chimeric SVA virus harboring the IRES from HCV, H-SVA, is viable and replicated normally in rodent-derived BHK-21 cells but displays replication defects in porcine-derived ST cells. In the generation of chimeric viruses in which domain-specific elements from SVA were replaced with those of HCV, we identified an essential role for the stem-loop I element for IRES activity and recombinant virus recovery. Furthermore, a series of stem-loop I mutants allowed us to functionally characterize discrete IRES regions and correlate impaired IRES activities, using reporter systems with our inability to recover recombinant viruses in two different cell types. Interestingly, mutant viruses harboring partially defective IRES were viable. However, no discernable replication differences were observed, relative to the wild-type virus, suggesting the cooperation of additional factors, such as intermolecular viral RNA interactions, act in concert in regulating IRES-dependent translation during infection. Altogether, we found that the stem-loop I of SVA is an essential element for IRES-dependent translation activity and viral replication. Full article
(This article belongs to the Topic Veterinary Infectious Diseases)
Show Figures

Figure 1

16 pages, 1437 KiB  
Article
Homology Modeling and Analysis of Structure Predictions of the Bovine Rhinitis B Virus RNA Dependent RNA Polymerase (RdRp)
by Devendra K. Rai and Elizabeth Rieder
Int. J. Mol. Sci. 2012, 13(7), 8998-9013; https://doi.org/10.3390/ijms13078998 - 19 Jul 2012
Cited by 19 | Viewed by 9131
Abstract
Bovine Rhinitis B Virus (BRBV) is a picornavirus responsible for mild respiratory infection of cattle. It is probably the least characterized among the aphthoviruses. BRBV is the closest relative known to Foot and Mouth Disease virus (FMDV) with a ~43% identical polyprotein sequence [...] Read more.
Bovine Rhinitis B Virus (BRBV) is a picornavirus responsible for mild respiratory infection of cattle. It is probably the least characterized among the aphthoviruses. BRBV is the closest relative known to Foot and Mouth Disease virus (FMDV) with a ~43% identical polyprotein sequence and as much as 67% identical sequence for the RNA dependent RNA polymerase (RdRp), which is also known as 3D polymerase (3Dpol). In the present study we carried out phylogenetic analysis, structure based sequence alignment and prediction of three-dimensional structure of BRBV 3Dpol using a combination of different computational tools. Model structures of BRBV 3Dpol were verified for their stereochemical quality and accuracy. The BRBV 3Dpol structure predicted by SWISS-MODEL exhibited highest scores in terms of stereochemical quality and accuracy, which were in the range of 2Å resolution crystal structures. The active site, nucleic acid binding site and overall structure were observed to be in agreement with the crystal structure of unliganded as well as template/primer (T/P), nucleotide tri-phosphate (NTP) and pyrophosphate (PPi) bound FMDV 3Dpol (PDB, 1U09 and 2E9Z). The closest proximity of BRBV and FMDV 3Dpol as compared to human rhinovirus type 16 (HRV-16) and rabbit hemorrhagic disease virus (RHDV) 3Dpols is also substantiated by phylogeny analysis and root-mean square deviation (RMSD) between C-α traces of the polymerase structures. The absence of positively charged α-helix at C terminal, significant differences in non-covalent interactions especially salt bridges and CH-pi interactions around T/P channel of BRBV 3Dpol compared to FMDV 3Dpol, indicate that despite a very high homology to FMDV 3Dpol, BRBV 3Dpol may adopt a different mechanism for handling its substrates and adapting to physiological requirements. Our findings will be valuable in the design of structure-function interventions and identification of molecular targets for drug design applicable to Aphthovirus RdRps. Full article
(This article belongs to the Special Issue Advances in Biomolecular Simulation)
Show Figures

Back to TopTop