Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = boudinage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 17159 KiB  
Article
Albite ± Actinolite-Altered Porphyry Dykes in Archean Gold Deposits of the Boulder Lefroy-Golden Mile Fault System, Yilgarn Craton, Western Australia: Petrography, Chronology, and Comparison to Canadian Albitites
by Andreas G. Mueller, Neal J. McNaughton and Janet R. Muhling
Minerals 2021, 11(11), 1288; https://doi.org/10.3390/min11111288 - 19 Nov 2021
Cited by 3 | Viewed by 4570
Abstract
The Boulder Lefroy-Golden Mile fault system in the Archean Yigarn Craton is the most productive gold-mineralized structure in Australia (>2300 t Au). The New Celebration deposit (51 t Au) is part of a group of hematite- and anhydrite-bearing mesothermal deposits and Fe-Cu-Au skarns [...] Read more.
The Boulder Lefroy-Golden Mile fault system in the Archean Yigarn Craton is the most productive gold-mineralized structure in Australia (>2300 t Au). The New Celebration deposit (51 t Au) is part of a group of hematite- and anhydrite-bearing mesothermal deposits and Fe-Cu-Au skarns associated with monzodiorite-tonalite intrusions in the strike-slip fault system. Ore-grade biotite-carbonate and late sericite-carbonate-alkali feldspar replacement is bound to the contacts of a felsic (low Cr, Ni, V) quartz-plagioclase porphyry dyke dated at 2676 ± 7 Ma. The sodic-potassic alteration of the felsic boudinaged dyke contrasts with the albite-actinolite alteration in the adjacent mafic (high Cr, Ni, V) plagioclase porphyry dated at 2662 ± 4 Ma, although both share the same sulfide-oxide assemblage: pyrite ± chalcopyrite, magnetite ± hematite. The younger porphyry locally crosscuts foliation and is bordered by post-kinematic actinolite-pyrite selvages overprinting talc-chlorite-phlogopite-dolomite schist. It contains auriferous pyrite (70 ppb Au; 610 ppb Ag) where sampled for zircon U-Pb chronology at +224 m elevation. Above the sample site, the dyke was mined as gold ore (1–6 g/t Au) at +300–350 m. Temperature estimates based on actinolite-albite pairs (300–350 °C) agree with the fluid inclusion trapping temperature of main-stage auriferous veins (330 ± 20 °C). These relationships are interpreted to indicate syn-mineralization emplacement. Gold-related albite-altered porphyry dykes (albitites) also occur in the world-class Hollinger-McIntyre (986 t Au) and Kerr Addison-Chesterville deposits (336 t Au), Abitibi greenstone belt, Canada. Full article
(This article belongs to the Special Issue Geology and Mineralogy of Hydrothermal Gold Deposits)
Show Figures

Figure 1

18 pages, 2103 KiB  
Article
Evidence of Lithospheric Boudinage in the Grand Banks of Newfoundland from Geophysical Observations
by Malcolm D. J. MacDougall, Alexander Braun and Georgia Fotopoulos
Geosciences 2021, 11(2), 55; https://doi.org/10.3390/geosciences11020055 - 28 Jan 2021
Cited by 1 | Viewed by 3509
Abstract
The evolution of the passive margin off the coast of Eastern Canada has been characterized by a series of rifting episodes which caused widespread extension of the lithosphere and associated structural anomalies, some with the potential to be classified as a result of [...] Read more.
The evolution of the passive margin off the coast of Eastern Canada has been characterized by a series of rifting episodes which caused widespread extension of the lithosphere and associated structural anomalies, some with the potential to be classified as a result of lithospheric boudinage. Crustal thinning of competent layers is often apparent in seismic sections, and deeper Moho undulations may appear as repeating elongated anomalies in gravity and magnetic surveys. By comparing the similar evolutions of the Grand Banks and the Norwegian Lofoten-Vesterålen passive margins, it is reasonable to explore the potential of the same structures being present. This investigation supplements our knowledge of analogous examples in the Norwegian Margin and the South China Sea with a thorough investigation of seismic, gravity and magnetic signatures, to determine that boudinage structures are evident in the context of the Grand Banks. Through analysis of geophysical data (including seismic, gravity and magnetic observations), a multi-stage boudinage mechanism is proposed, which is characterized by an upper crust short-wavelength deformation ranging from approximately 20–80 km and a lower crust long-wavelength deformation exceeding 200 km in length. In addition, the boudinage mechanism caused slightly different structures which are apparent in the block geometry and layeredness. Based on these results, there are indications that boudinage wavelength increases with each successive rifting phase, with geometry changing from domino style to a more shearband/symmetrical style as the scale of deformation is increased to include the entire lithosphere. Full article
Show Figures

Figure 1

29 pages, 14522 KiB  
Article
Archean Rocks of the Diorite Window Block in the Southern Framing of the Monchegorsk (2.5 Ga) Layered Mafic-Ultramafic Complex (Kola Peninsula, Russia)
by Pavel Pripachkin, Tatiana Rundkvist, Nikolay Groshev, Aiya Bazai and Pavel Serov
Minerals 2020, 10(10), 848; https://doi.org/10.3390/min10100848 - 25 Sep 2020
Cited by 5 | Viewed by 4290
Abstract
The intermediate rocks classified as diorite-gneisses occur within the southern part of the Monchegorsk (2.5 Ga) layered mafic-ultramafic complex (Kola Peninsula, Russia). These diorite-gneisses belong to a block historically known as the diorite window (DW) block. The same rocks occur in a framing [...] Read more.
The intermediate rocks classified as diorite-gneisses occur within the southern part of the Monchegorsk (2.5 Ga) layered mafic-ultramafic complex (Kola Peninsula, Russia). These diorite-gneisses belong to a block historically known as the diorite window (DW) block. The same rocks occur in a framing of the Monchegorsk complex. The DW block is predominantly composed of diorite-gneisses and, to a lesser degree, of amphibolites. Multi-ordinal banding, complex folding, boudinage and metamorphic transformations, garnet porphyroblasts, and tourmaline veinlets are typical of the diorite-gneisses. In accordance with the U-Pb isotope data, the age of the diorite-gneisses in the DW block is 2736.0 ± 4.6 Ma. The Sm-Nd mineral (garnet, biotite, and tourmaline) isochron for the DW rocks has yielded an age of 1806 ± 23 Ma (related to the processes of the Svecofennian orogeny). The DW diorite-gneisses are compared with the metadiorites of the Gabbro-10 massif. The latter is a part of the Monchegorsk complex, with U-Pb crystallization age of 2498 ± 6 Ma. On the basis of geological and isotope-geochemical data, it is shown that the DW rocks belong to the Archean basement while the Gabbro-10 metadiorites probably represent one of the late-magmatic phases of the Monchegorsk complex. Full article
(This article belongs to the Special Issue Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes)
Show Figures

Figure 1

0 pages, 18659 KiB  
Article
Superposed Sedimentary and Tectonic Block-In-Matrix Fabrics in a Subducted Serpentinite Mélange (High-Pressure Zermatt Saas Ophiolite, Western Alps)
by Paola Tartarotti, Sara Sibil Giuseppina Guerini, Francesca Rotondo, Andrea Festa, Gianni Balestro, Gray E. Bebout, Enrico Cannaò, Gabe S. Epstein and Marco Scambelluri
Geosciences 2019, 9(8), 358; https://doi.org/10.3390/geosciences9080358 - 16 Aug 2019
Cited by 23 | Viewed by 6593
Abstract
The primary stratigraphic fabric of a chaotic rock unit in the Zermatt Saas ophiolite of the Western Alps was reworked by a polyphase Alpine tectonic deformation. Multiscalar structural criteria demonstrate that this unit was deformed by two ductile subduction-related phases followed by brittle-ductile [...] Read more.
The primary stratigraphic fabric of a chaotic rock unit in the Zermatt Saas ophiolite of the Western Alps was reworked by a polyphase Alpine tectonic deformation. Multiscalar structural criteria demonstrate that this unit was deformed by two ductile subduction-related phases followed by brittle-ductile then brittle deformation. Deformation partitioning operated at various scales, leaving relatively unstrained rock domains preserving internal texture, organization, and composition. During subduction, ductile deformation involved stretching, boudinage, and simultaneous folding of the primary stratigraphic succession. This deformation is particularly well-documented in alternating layers showing contrasting deformation style, such as carbonate-rich rocks and turbiditic serpentinite metasandstones. During collision and exhumation, deformation enhanced the boudinaged horizons and blocks, giving rise to spherical to lozenge-shaped blocks embedded in a carbonate-rich matrix. Structural criteria allow the recognition of two main domains within the chaotic rock unit, one attributable to original broken formations reflecting turbiditic sedimentation, the other ascribable to an original sedimentary mélange. The envisaged geodynamic setting for the formation of the protoliths is the Jurassic Ligurian-Piedmont ocean basin floored by mostly serpentinized peridotites, intensely tectonized by extensional faults that triggered mass transport processes and turbiditic sedimentation. Full article
(This article belongs to the Special Issue Geology of Mélanges)
Show Figures

Graphical abstract

41 pages, 23058 KiB  
Article
Gem Corundum Deposits of Greece: Geology, Mineralogy and Genesis
by Panagiotis Voudouris, Constantinos Mavrogonatos, Ian Graham, Gaston Giuliani, Vasilios Melfos, Stefanos Karampelas, Vilelmini Karantoni, Kandy Wang, Alexandre Tarantola, Khin Zaw, Sebastien Meffre, Stephan Klemme, Jasper Berndt, Stefanie Heidrich, Federica Zaccarini, Anthony Fallick, Maria Tsortanidis and Andreas Lampridis
Minerals 2019, 9(1), 49; https://doi.org/10.3390/min9010049 - 15 Jan 2019
Cited by 19 | Viewed by 13744
Abstract
Greece contains several gem corundum deposits set within diverse geological settings, mostly within the Rhodope (Xanthi and Drama areas) and Attico-Cycladic (Naxos and Ikaria islands) tectono-metamorphic units. In the Xanthi area, the sapphire (pink, blue to purple) deposits are stratiform, occurring within marble [...] Read more.
Greece contains several gem corundum deposits set within diverse geological settings, mostly within the Rhodope (Xanthi and Drama areas) and Attico-Cycladic (Naxos and Ikaria islands) tectono-metamorphic units. In the Xanthi area, the sapphire (pink, blue to purple) deposits are stratiform, occurring within marble layers alternating with amphibolites. Deep red rubies in the Paranesti-Drama area are restricted to boudinaged lenses of Al-rich metapyroxenites alternating with amphibolites and gneisses. Both occurrences are oriented parallel to the ultra-high pressure/high pressure (UHP/HP) Nestos suture zone. On central Naxos Island, colored sapphires are associated with desilicated granite pegmatites intruding ultramafic lithologies (plumasites), occurring either within the pegmatites themselves or associated metasomatic reaction zones. In contrast, on southern Naxos and Ikaria Islands, blue sapphires occur in extensional fissures within Mesozoic metabauxites hosted in marbles. Mineral inclusions in corundums are in equilibrium and/or postdate corundum crystallization and comprise: spinel and pargasite (Paranesti), spinel, zircon (Xanthi), margarite, zircon, apatite, diaspore, phlogopite and chlorite (Naxos) and chloritoid, ilmenite, hematite, ulvospinel, rutile and zircon (Ikaria). The main chromophore elements within the Greek corundums show a wide range in concentration: the Fe contents vary from (average values) 1099 ppm in the blue sapphires of Xanthi, 424 ppm in the pink sapphires of Xanthi, 2654 ppm for Paranesti rubies, 4326 ppm for the Ikaria sapphires, 3706 for southern Naxos blue sapphires, 4777 for purple and 3301 for pink sapphire from Naxos plumasite, and finally 4677 to 1532 for blue to colorless sapphires from Naxos plumasites, respectively. The Ti concentrations (average values) are very low in rubies from Paranesti (41 ppm), with values of 2871 ppm and 509 in the blue and pink sapphires of Xanthi, respectively, of 1263 ppm for the Ikaria blue sapphires, and 520 ppm, 181 ppm in Naxos purple, pink sapphires, respectively. The blue to colorless sapphires from Naxos plumasites contain 1944 to 264 ppm Ti, respectively. The very high Ti contents of the Xanthi blue sapphires may reflect submicroscopic rutile inclusions. The Cr (average values) ranges from 4 to 691 ppm in the blue, purple and pink colored corundums from Naxos plumasite, is quite fixed (222 ppm) for Ikaria sapphires, ranges from 90 to 297 ppm in the blue and pink sapphires from Xanthi, reaches 9142 ppm in the corundums of Paranesti, with highest values of 15,347 ppm in deep red colored varieties. Each occurrence has both unique mineral assemblage and trace element chemistry (with variable Fe/Mg, Ga/Mg, Ga/Cr and Fe/Ti ratios). Additionally, oxygen isotope compositions confirm their geological typology, i.e., with, respectively δ18O of 4.9 ± 0.2‰ for sapphire in plumasite, 20.5‰ for sapphire in marble and 1‰ for ruby in mafics. The fluid inclusions study evidenced water free CO2 dominant fluids with traces of CH4 or N2, and low CO2 densities (0.46 and 0.67 g/cm3), which were probably trapped after the metamorphic peak. The Paranesti, Xanthi and central Naxos corundum deposits can be classified as metamorphic sensu stricto (s.s.) and metasomatic, respectively, those from southern Naxos and Ikaria display atypical magmatic signature indicating a hydrothermal origin. Greek corundums are characterized by wide color variation, homogeneity of the color hues, and transparency, and can be considered as potential gemstones. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Gems)
Show Figures

Figure 1

18 pages, 5732 KiB  
Article
Multi-Stage Deformation of the Khangalas Ore Cluster (Verkhoyansk-Kolyma Folded Region, Northeast Russia): Ore-Controlling Reverse Thrust Faults and Post-Mineral Strike-Slip Faults
by Valery Y. Fridovsky, Maxim V. Kudrin and Lena I. Polufuntikova
Minerals 2018, 8(7), 270; https://doi.org/10.3390/min8070270 - 26 Jun 2018
Cited by 13 | Viewed by 5100
Abstract
This study reports the results of the analysis of multi-stage deformation structures of the Khangalas gold ore cluster, northeast Russia. Four Late Mesozoic-Early Eocene deformation stages were identified. The first deformation event (D1) was characterized by the development of NW-striking tight to isoclinal [...] Read more.
This study reports the results of the analysis of multi-stage deformation structures of the Khangalas gold ore cluster, northeast Russia. Four Late Mesozoic-Early Eocene deformation stages were identified. The first deformation event (D1) was characterized by the development of NW-striking tight to isoclinal folds of the first generation (F1) and interstratal detachment thrusts. Major folds, extensive thrusts, boudinage, cleavage, auriferous mineralized fault zones and quartz-vein gold mineralization were formed in the reverse and thrust fault stress field during the progressive deformation stage (D1), with NE-SW-oriented σ1. Post-ore deformation is widely manifested in the region. Structures D2 and D3 are coaxial. Sinistral strike-slip motions (D2 and D3) occurred along NW-trending faults under prevailing W-E compression. They were accompanied by the formation of NS- and NE-striking F2–3 folds with steep hinges and by bending of the earlier formed structures, among them ore-controlling ones. The last deformation event (D4) was represented by normal-dextral strike-slip faulting, refolding of rocks, pre-existing structures and ore bodies and by the development of folds with steep hinges. Key structural elements of varying age are described, the chronology of deformation events and mineralization reconstructed and their relation to geodynamic events in northeast Asia established. Full article
(This article belongs to the Special Issue Structural Control of Mineral Deposits: Theory and Reality)
Show Figures

Figure 1

Back to TopTop