Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = biosolids post-treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3788 KiB  
Article
The Fate of Fluorine Post Per- and Polyfluoroalkyl Substances Destruction during the Thermal Treatment of Biosolids: A Thermodynamic Study
by Savankumar Patel, Pobitra Halder, Ibrahim Gbolahan Hakeem, Ekaterina Selezneva, Manoj Kumar Jena, Ganesh Veluswamy, Nimesha Rathnayake, Abhishek Sharma, Anithadevi Kenday Sivaram, Aravind Surapaneni, Ravi Naidu, Mallavarapu Megharaj, Arun K. Vuppaladadiyam and Kalpit Shah
Energies 2024, 17(14), 3476; https://doi.org/10.3390/en17143476 - 15 Jul 2024
Cited by 2 | Viewed by 1958
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of fluorinated synthetic chemicals that are highly recalcitrant, toxic, and bio-accumulative and have been detected in biosolids worldwide, posing potential risks to humans and the environment. Recent studies suggest that the organic C-F bond in [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are a group of fluorinated synthetic chemicals that are highly recalcitrant, toxic, and bio-accumulative and have been detected in biosolids worldwide, posing potential risks to humans and the environment. Recent studies suggest that the organic C-F bond in PFAS can be destructed and potentially mineralised into inorganic fluorides during thermal treatment. This study focuses on thermodynamic equilibrium investigations and the fate of fluorine compounds post-PFAS destruction during biosolid thermal treatment. The results indicate that gas-phase fluorine compounds are mainly hydrogen fluoride (HF) and alkali fluorides, whereas solid-phase fluorine compounds include alkaline earth fluorides and their spinels. High moisture and oxygen content in the volatiles increased the concentration of HF in the gas phase. However, adding minerals reduced the emission of HF in the gas phase significantly and enhanced the capture of fluorine as CaF2 spinel in the solid phase. This study also investigates the effect of feedstock composition on the fate of fluorine. High ash content and low volatile matter in the feedstock reduced HF gas emissions and increased fluorine capture in the solid product. The findings of this work are useful in designing thermal systems with optimised operating conditions for minimising the release of fluorinated species during the thermal treatment of PFAS-containing biosolids. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

19 pages, 2222 KiB  
Article
Iron and Hydrogen Peroxidation-Induced Post-Treatment Improvement of Municipal Mesophilic Digestate in an Alkaline Environment and Its Impact on Biosolids Quality
by Umme Sharmeen Hyder, Ahmed AlSayed, Elsayed Elbeshbishy, Joseph McPhee and Reshmi Misir
Processes 2023, 11(9), 2752; https://doi.org/10.3390/pr11092752 - 14 Sep 2023
Cited by 4 | Viewed by 1536
Abstract
Challenges associated with mesophilic digestate (MD) involve volume, odor, and pathogens, which effective post-digestion treatments can address. The efficiency of MD post-treatment can be enhanced by conditioning with ferric chloride (FeCl3), hydrogen peroxide (H2O2), and polymer. This [...] Read more.
Challenges associated with mesophilic digestate (MD) involve volume, odor, and pathogens, which effective post-digestion treatments can address. The efficiency of MD post-treatment can be enhanced by conditioning with ferric chloride (FeCl3), hydrogen peroxide (H2O2), and polymer. This study aimed to observe the effect of combined chemical conditioning on volume reduction, phosphorus (P) release, odor, and pathogen reduction potential for MD. MD was conditioned with polymer only, polymer and FeCl3 at pH adjusted to 8.0 with lime (Ca(OH)2), and a blend of polymer, FeCl3, and hydrogen peroxide (H2O2) at pH 8.0. The results show that adding all three chemicals improved post-treatment efficiency at 2.1 kg/t DS FeCl3, 2.1 kg/t DS polymer, and 600 mg/L H2O2 at pH 8.0, compared with polymer or dual conditioning. At the combined dose, cake solid content, centrate P removal, and odor reduction capability improved compared with raw MD by 20%, 99%, and 66%, respectively. Combined chemical treatment reduced fecal coliform by 98% but does not fulfil class A requirements and showed 50% regrowth potential. The synergic effect of polymer, FeCl3, H2O2, and alkaline pH breakdown EPS, reduced water holding capacity and formed compacted flocs for better water removal and settling. This combination also precipitated P through FeCl3 while H2O2 oxidation curbs odor, enhancing further P removal from centrate. Full article
(This article belongs to the Topic Technologies for Wastewater and Sludge Treatment)
Show Figures

Figure 1

25 pages, 791 KiB  
Review
Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges
by Oumaima Mabrouk, Helmi Hamdi, Sami Sayadi, Mohammad A. Al-Ghouti, Mohammed H. Abu-Dieyeh and Nabil Zouari
Sustainability 2023, 15(8), 6773; https://doi.org/10.3390/su15086773 - 17 Apr 2023
Cited by 25 | Viewed by 5792
Abstract
Sludge generation as an organic by-product of wastewater treatment has seen a consistent increase worldwide due to population growth and industrial activities. This poses a chronic challenge regarding management options and environmental concerns. The agricultural valorization of unconventional organic materials has become inevitable, [...] Read more.
Sludge generation as an organic by-product of wastewater treatment has seen a consistent increase worldwide due to population growth and industrial activities. This poses a chronic challenge regarding management options and environmental concerns. The agricultural valorization of unconventional organic materials has become inevitable, especially in semi-arid and arid countries that suffer from depleted soils and shortages in farm manure supply. High-income countries have also been interested in this recycling practice to mitigate landfilling or incineration issues. Sewage and some industrial sludges contain a complex mixture of beneficial and harmful substances, which varies with the origin of effluents. Therefore, sludge land application should be well managed in order to achieve sustainable agro-environmental goals. This review paper focuses on different aspects related to sludge reuse in agriculture, starting by investigating the diversity of sludge types and composition. In addition to the preponderant urban sewage sludge, the less-studied industrial sludges, such as those generated from pulp and paper mills or gas-to-liquid industries, are hereby addressed as well. Then, post-land application effects are discussed in relation to sludge quality, dose, and reuse conditions. The present paper also examines the disparities between guidelines that determine sludge conformity for land application in various countries or regions. Accordingly, special attention is given to increasing risks related to emerging pollutants in sludge such as pharmaceuticals, which have been overused since the outbreak of COVID-19 pandemic. This exhaustive investigation will assist the establishment of sustainable strategies for the safe agricultural reuse of biosolids. Full article
(This article belongs to the Special Issue Waste Utilization in Agriculture and Sustainable Development)
Show Figures

Figure 1

17 pages, 3325 KiB  
Article
A Circular Economy Approach to Restoring Soil Substrate Ameliorated by Sewage Sludge with Amendments
by Wiktor Halecki, Nuria Aide López-Hernández, Aleksandra Koźmińska, Krystyna Ciarkowska and Sławomir Klatka
Int. J. Environ. Res. Public Health 2022, 19(9), 5296; https://doi.org/10.3390/ijerph19095296 - 27 Apr 2022
Cited by 5 | Viewed by 2568
Abstract
This study examined the use of an artificial soil substrate in a mine waste reclamation area and its effect on plant metabolic functions. Research was conducted by determining the relationship between the plants’ biochemical features and the properties of plant growth medium derived [...] Read more.
This study examined the use of an artificial soil substrate in a mine waste reclamation area and its effect on plant metabolic functions. Research was conducted by determining the relationship between the plants’ biochemical features and the properties of plant growth medium derived from post-flotation coal waste, sewage sludge, crushed stone and fly ash on the surface of the mine waste disposal area. Trees and shrubs were established on the material and allowed to grow for eight years. The study determined that the applied plants and the naturally occurring Taraxacum officinale were suitable for physio-biochemical assessment, identification of derelict areas and reclamation purposes. An evaluation of a soil substrate applied to post-mining areas indicated that it was beneficial for plant growth since it activated the metabolic functions of herbaceous plants, shrubs, and trees. The study showed that soil substrate can be targeted to improve plant stress tolerance to potentially toxic elements (PTEs). These data suggest the potential for growth and slower susceptible response to Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. It is possible that the constructed soil-substitute substrate (biosolid material) would be an effective reclamation treatment in areas where natural soil materials are polluted by PTEs. This observation may reflect a more efficient use of soil substrate released from the cycling of organic biogene pools, in accordance with the circular economy approach. In further studies related to land reclamation using sewage sludge amendments, it would be necessary to extend the research to other stress factors, such as salinity or water deficiency. Full article
(This article belongs to the Special Issue Circular Economy in Waste and Wastewaters)
Show Figures

Graphical abstract

22 pages, 3090 KiB  
Article
Biosolid-Amended Soil Enhances Defense Responses in Tomato Based on Metagenomic Profile and Expression of Pathogenesis-Related Genes
by Evangelia Stavridou, Ioannis Giannakis, Ioanna Karamichali, Nathalie N. Kamou, George Lagiotis, Panagiotis Madesis, Christina Emmanouil, Athanasios Kungolos, Irini Nianiou-Obeidat and Anastasia L. Lagopodi
Plants 2021, 10(12), 2789; https://doi.org/10.3390/plants10122789 - 16 Dec 2021
Cited by 22 | Viewed by 4002
Abstract
Biosolid application is an effective strategy, alternative to synthetic chemicals, for enhancing plant growth and performance and improving soil properties. In previous research, biosolid application has shown promising results with respect to tomato resistance against Fusarium oxysporum f. sp. radicis-lycopersici (Forl). [...] Read more.
Biosolid application is an effective strategy, alternative to synthetic chemicals, for enhancing plant growth and performance and improving soil properties. In previous research, biosolid application has shown promising results with respect to tomato resistance against Fusarium oxysporum f. sp. radicis-lycopersici (Forl). Herein, we aimed at elucidating the effect of biosolid application on the plant–microbiome response mechanisms for tomato resistance against Forl at a molecular level. More specifically, plant–microbiome interactions in the presence of biosolid application and the biocontrol mechanism against Forl in tomato were investigated. We examined whether biosolids application in vitro could act as an inhibitor of growth and sporulation of Forl. The effect of biosolid application on the biocontrol of Forl was investigated based on the enhanced plant resistance, measured as expression of pathogen-response genes, and pathogen suppression in the context of soil microbiome diversity, abundance, and predicted functions. The expression of the pathogen-response genes was variably induced in tomato plants in different time points between 12 and 72 h post inoculation in the biosolid-enriched treatments, in the presence or absence of pathogens, indicating activation of defense responses in the plant. This further suggests that biosolid application resulted in a successful priming of tomato plants inducing resistance mechanisms against Forl. Our results have also demonstrated that biosolid application alters microbial diversity and the predicted soil functioning, along with the relative abundance of specific phyla and classes, as a proxy for disease suppression. Overall, the use of biosolid as a sustainable soil amendment had positive effects not only on plant health and protection, but also on growth of non-pathogenic antagonistic microorganisms against Forl in the tomato rhizosphere and thus, on plant–soil microbiome interactions, toward biocontrol of Forl. Full article
Show Figures

Figure 1

16 pages, 3751 KiB  
Article
Plant Community Structure within a Reclamation Field Trial and Forested Reference Sites in a Post-Mine Environment
by Sean B. Rapai, Brianna Collis, Thomas Henry, Kimberly Lyle, Steven G. Newmaster, Veronika Raizman and Robert H. Hanner
Forests 2021, 12(6), 776; https://doi.org/10.3390/f12060776 - 12 Jun 2021
Cited by 4 | Viewed by 3149
Abstract
Early successional plant community assemblage within a reclamation field trial at the Detour Lake Mine in northeastern Ontario is assessed, and compared with reference forested and historically reclaimed sites. The reclamation field trial examines eight amendment treatment combinations that include treatments with a [...] Read more.
Early successional plant community assemblage within a reclamation field trial at the Detour Lake Mine in northeastern Ontario is assessed, and compared with reference forested and historically reclaimed sites. The reclamation field trial examines eight amendment treatment combinations that include treatments with a winter kill cover crop of oats, fertilizer, biosolids, peat, and combinations thereof. The objectives of this study are to: (1) Investigate how soil amendments influence plant functional group establishment and growth in mine overburden; and (2) Explore the amendment properties that best support the establishment and growth of a plant community that resembles the baseline reference sites. Currently, the presence of non-native species and a dominant woody plant community explains the largest proportion of variance between the forested upland and lowland reference sites and all reclaimed sites. Similar to non-native species, graminoids were absent from the upland forested reference sites. The difference in the graminoid community explains much of the variance between the forested reference sites and all reclaimed sites. The cumulative additions of fertilizer and peat increased alpha diversity of non-native and graminoid plants within the amendment treatments, which had greater alpha diversity of these plant functional groups than the forested reference sites. Within the amendment treatments, non-native and graminoid alpha diversity was initially greater in the nutrient treatments, but by 2019 there was no significant difference in non-native or graminoid alpha diversity between amendment treatments. The results indicate that applications of nutrients through fertilizer or biosolids may increase graminoid alpha diversity and abundance within reclamation units in year 1. The results also confirm that the vascular plant community composition present within the historically reclaimed sites and amendment treatments does not resemble the forested reference sites. The plant community present within the amendment treatment sites is best described as early successional, with the presence of non-native herbaceous legumes dominating the historically reclaimed sites. Despite this, the results indicate that fertilizer and biosolids-based treatments have developed a vascular plant community, excluding woody species that is more similar to the forested reference sites than the peat-based treatments. Further research and long-term monitoring are needed to determine which amendment treatment will best support a plant community that resembles the forested reference sites. In addition, future studies of this nature might consider including wildfire affected and post-harvested forest stands as additional reference sites, to better capture possible plant community trajectories of a severely disturbed environment. Full article
(This article belongs to the Topic Interdisciplinary Studies for Sustainable Mining)
Show Figures

Figure 1

Back to TopTop