Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = biological electric shock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 543 KiB  
Article
Low-Voltage Biological Electric Shock Fault Diagnosis Based on the Attention Mechanism Fusion Parallel Convolutional Neural Network/Bidirectional Long Short-Term Memory Model
by Meijin Lin, Yuliang Luo, Senjie Chen, Zhirong Qiu and Zibin Dai
Mathematics 2024, 12(24), 3984; https://doi.org/10.3390/math12243984 - 18 Dec 2024
Cited by 1 | Viewed by 889
Abstract
Electric shock protection is critical for ensuring power safety in low-voltage grids, and robust fault diagnosis methods provide an essential foundation for the accurate operation of such protection devices. However, current low-voltage electric shock protection devices often suffer from limitations in operational precision [...] Read more.
Electric shock protection is critical for ensuring power safety in low-voltage grids, and robust fault diagnosis methods provide an essential foundation for the accurate operation of such protection devices. However, current low-voltage electric shock protection devices often suffer from limitations in operational precision and in their ability to effectively recognize electric shock types. To address these challenges, this paper proposes a fault diagnosis method for low-voltage electric shocks based on an attention-enhanced parallel CNN-BiLSTM model. The method first utilizes CNN to extract local spatial features of the electric shock signal and BiLSTM to capture temporal features. An attention mechanism is then introduced to fuse the local spatial and temporal features with weighted emphasis. Finally, a fully connected layer maps the fused features to the output layer, generating diagnostic results. Visualization through T-SNE analysis validates the improvement in model performance due to the attention mechanism. Comparative experiments show that the proposed model outperforms single models and other combined models in terms of accuracy, precision, recall, F1 score, and convergence speed. The results demonstrate that the proposed model achieves a fault diagnosis accuracy of 99.55%. Full article
Show Figures

Figure 1

21 pages, 4938 KiB  
Article
Single-Nucleus Transcriptome Profiling from the Hippocampus of a PTSD Mouse Model and CBD-Treated Cohorts
by Guanbo Xie, Yihan Qin, Ning Wu, Xiao Han and Jin Li
Genes 2024, 15(4), 519; https://doi.org/10.3390/genes15040519 - 21 Apr 2024
Cited by 3 | Viewed by 2667
Abstract
Post-traumatic stress disorder (PTSD) is the most common psychiatric disorder after a catastrophic event; however, the efficacious treatment options remain insufficient. Increasing evidence suggests that cannabidiol (CBD) exhibits optimal therapeutic effects for treating PTSD. To elucidate the cell-type-specific transcriptomic pathology of PTSD and [...] Read more.
Post-traumatic stress disorder (PTSD) is the most common psychiatric disorder after a catastrophic event; however, the efficacious treatment options remain insufficient. Increasing evidence suggests that cannabidiol (CBD) exhibits optimal therapeutic effects for treating PTSD. To elucidate the cell-type-specific transcriptomic pathology of PTSD and the mechanisms of CBD against this disease, we conducted single-nucleus RNA sequencing (snRNA-seq) in the hippocampus of PTSD-modeled mice and CBD-treated cohorts. We constructed a mouse model by adding electric foot shocks following exposure to single prolonged stress (SPS+S) and tested the freezing time, anxiety-like behavior, and cognitive behavior. CBD was administrated before every behavioral test. The PTSD-modeled mice displayed behaviors resembling those of PTSD in all behavioral tests, and CBD treatment alleviated all of these PTSD-like behaviors (n = 8/group). Three mice with representative behavioral phenotypes were selected from each group for snRNA-seq 15 days after the SPS+S. We primarily focused on the excitatory neurons (ExNs) and inhibitory neurons (InNs), which accounted for 68.4% of the total cell annotations. A total of 88 differentially upregulated genes and 305 differentially downregulated genes were found in the PTSD mice, which were found to exhibit significant alterations in pathways and biological processes associated with fear response, synaptic communication, protein synthesis, oxidative phosphorylation, and oxidative stress response. A total of 63 overlapping genes in InNs were identified as key genes for CBD in the treatment of PTSD. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the anti-PTSD effect of CBD was related to the regulation of protein synthesis, oxidative phosphorylation, oxidative stress response, and fear response. Furthermore, gene set enrichment analysis (GSEA) revealed that CBD also enhanced retrograde endocannabinoid signaling in ExNs, which was found to be suppressed in the PTSD group. Our research may provide a potential explanation for the pathogenesis of PTSD and facilitate the discovery of novel therapeutic targets for drug development. Moreover, it may shed light on the therapeutic mechanisms of CBD. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 2797 KiB  
Article
Sedative-Hypnotic Effects of Glycine max Merr. Extract and Its Active Ingredient Genistein on Electric-Shock-Induced Sleep Disturbances in Rats
by Minsook Ye, SunYoung Lee, Hyo Jeong Yu, Kyu-Ri Kim, Hyun-Jung Park, In-Cheol Kang, Soon Ah Kang, Young-Shin Chung and Insop Shim
Int. J. Mol. Sci. 2023, 24(8), 7043; https://doi.org/10.3390/ijms24087043 - 11 Apr 2023
Cited by 8 | Viewed by 3200
Abstract
Glycine max Merr. (GM) is a functional food that provides many beneficial phytochemicals. However, scientific evidence of its antidepressive and sedative activities is scarce. The present study was designed to investigate the antidepressive and calmative effects of GM and its biologically active [...] Read more.
Glycine max Merr. (GM) is a functional food that provides many beneficial phytochemicals. However, scientific evidence of its antidepressive and sedative activities is scarce. The present study was designed to investigate the antidepressive and calmative effects of GM and its biologically active compound, genistein (GE), using electroencephalography (EEG) analysis in an electric foot shock (EFS)-stressed rat. The underlying neural mechanisms of their beneficial effects were determined by assessing corticotropin-releasing factor (CRF), serotonin (5-HT), and c-Fos immunoreactivity in the brain using immunohistochemical methods. In addition, the 5-HT2C receptor binding assay was performed because it is considered a major target of antidepressants and sleep aids. In the binding assay, GM displayed binding affinity to the 5-HT2C receptor (IC50 value of 14.25 ± 11.02 µg/mL). GE exhibited concentration-dependent binding affinity, resulting in the binding of GE to the 5-HT2C receptor (IC50, 77.28 ± 26.57 mg/mL). Administration of GM (400 mg/kg) increased non-rapid eye movement (NREM) sleep time. Administration of GE (30 mg/kg) decreased wake time and increased rapid eye movement (REM) and NREM sleep in EPS-stressed rats. In addition, treatment with GM and GE significantly decreased c-Fos and CRF expression in the paraventricular nucleus (PVN) and increased 5-HT levels in the dorsal raphe in the brain. Overall, these results suggest that GM and GE have antidepressant-like effects and are effective in sleep maintenance. These results will benefit researchers in developing alternatives to decrease depression and prevent sleep disorders. Full article
Show Figures

Figure 1

29 pages, 8838 KiB  
Article
Design and Manufacturing of Equipment for Investigation of Low Frequency Bioimpedance
by Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Gabriela Telipan and Victor Stoica
Micromachines 2022, 13(11), 1858; https://doi.org/10.3390/mi13111858 - 29 Oct 2022
Cited by 4 | Viewed by 2833
Abstract
The purpose of this study was to highlight a method of making equipment for the investigation of low frequency bioimpedance. A constant current with an average value of I = 100 µA is injected into the human body via means of current injection [...] Read more.
The purpose of this study was to highlight a method of making equipment for the investigation of low frequency bioimpedance. A constant current with an average value of I = 100 µA is injected into the human body via means of current injection electrodes, and the biological signal is taken from the electrodes of electric potential charged with the biopotentials generated by the human body. The resulting voltage, ΔU is processed by the electronic conditioning system. The mathematical model of the four-electrode system in contact with the skin, and considering a target organ, was simplified to a single equivalent impedance. The capacitive filter low passes down from the differential input of the first instrumentation amplifier together with the isolated capacitive barrier integrated in the precision isolated secondary amplifier and maintains the biological signal taken from the electrodes charged with the undistorted biopotentials generated by the human body. Mass loops are avoided, and any electric shocks or electrostatic discharges are prevented. In addition, for small amplitudes of the biological signal, electromagnetic interferences of below 100 Hz of the power supply network were eliminated by using an active fourth-order Bessel filtering module. The measurements performed for the low frequency of f = 100 Hz on the volunteers showed for the investigated organs that the bioelectrical resistivities vary from 90 Ωcm up to 450 Ωcm, and that these are in agreement with other published and disseminated results for each body zone. Full article
(This article belongs to the Special Issue Electrochemical Sensors in Biological Applications, Volume II)
Show Figures

Figure 1

35 pages, 3606 KiB  
Review
A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors
by Varnakavi. Naresh and Nohyun Lee
Sensors 2021, 21(4), 1109; https://doi.org/10.3390/s21041109 - 5 Feb 2021
Cited by 1303 | Viewed by 88757
Abstract
A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor [...] Read more.
A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology. Full article
(This article belongs to the Special Issue Advances of Nanotechnologies in Biosensing and Bioimaging)
Show Figures

Figure 1

16 pages, 2996 KiB  
Article
A Gal-MµS Device to Evaluate Cell Migratory Response to Combined Galvano-Chemotactic Fields
by Shawn Mishra and Maribel Vazquez
Biosensors 2017, 7(4), 54; https://doi.org/10.3390/bios7040054 - 21 Nov 2017
Cited by 15 | Viewed by 7171
Abstract
Electric fields have been studied extensively in biomedical engineering (BME) for numerous regenerative therapies. Recent studies have begun to examine the biological effects of electric fields in combination with other environmental cues, such as tissue-engineered extracellular matrices (ECM), chemical gradient profiles, and time-dependent [...] Read more.
Electric fields have been studied extensively in biomedical engineering (BME) for numerous regenerative therapies. Recent studies have begun to examine the biological effects of electric fields in combination with other environmental cues, such as tissue-engineered extracellular matrices (ECM), chemical gradient profiles, and time-dependent temperature gradients. In the nervous system, cell migration driven by electrical fields, or galvanotaxis, has been most recently studied in transcranial direct stimulation (TCDS), spinal cord repair and tumor treating fields (TTF). The cell migratory response to galvano-combinatory fields, such as magnetic fields, chemical gradients, or heat shock, has only recently been explored. In the visual system, restoration of vision via cellular replacement therapies has been limited by low numbers of motile cells post-transplantation. Here, the combinatory application of electrical fields with other stimuli to direct cells within transplantable biomaterials and/or host tissues has been understudied. In this work, we developed the Gal-MµS device, a novel microfluidics device capable of examining cell migratory behavior in response to single and combinatory stimuli of electrical and chemical fields. The formation of steady-state, chemical concentration gradients and electrical fields within the Gal-MµS were modeled computationally and verified experimentally within devices fabricated via soft lithography. Further, we utilized real-time imaging within the device to capture cell trajectories in response to electric fields and chemical gradients, individually, as well as in combinatory fields of both. Our data demonstrated that neural cells migrated longer distances and with higher velocities in response to combined galvanic and chemical stimuli than to either field individually, implicating cooperative behavior. These results reveal a biological response to galvano-chemotactic fields that is only partially understood, as well as point towards novel migration-targeted treatments to improve cell-based regenerative therapies. Full article
(This article belongs to the Special Issue Point-of-Care Diagnostics)
Show Figures

Figure 1

29 pages, 752 KiB  
Article
Biological Anomalies around the 2009 L’Aquila Earthquake
by Cristiano Fidani
Animals 2013, 3(3), 693-721; https://doi.org/10.3390/ani3030693 - 6 Aug 2013
Cited by 27 | Viewed by 13835
Abstract
The April 6, 2009 L’Aquila earthquake was the strongest seismic event to occur in Italy over the last thirty years with a magnitude of M = 6.3. Around the time of the seismic swarm many instruments were operating in Central Italy, even if [...] Read more.
The April 6, 2009 L’Aquila earthquake was the strongest seismic event to occur in Italy over the last thirty years with a magnitude of M = 6.3. Around the time of the seismic swarm many instruments were operating in Central Italy, even if not dedicated to biological effects associated with the stress field variations, including seismicity. Testimonies were collected using a specific questionnaire immediately after the main shock, including data on earthquake lights, gas leaks, human diseases, and irregular animal behavior. The questionnaire was made up of a sequence of arguments, based upon past historical earthquake observations and compiled over seven months after the main shock. Data on animal behavior, before, during and after the main shocks, were analyzed in space/time distributions with respect to the epicenter area, evidencing the specific responses of different animals. Several instances of strange animal behavior were observed which could causally support the hypotheses that they were induced by the physical presence of gas, electric charges and electromagnetic waves in atmosphere. The aim of this study was to order the biological observations and thereby allow future work to determine whether these observations were influenced by geophysical parameters. Full article
(This article belongs to the Special Issue Biological Anomalies Prior to Earthquakes)
Show Figures

Figure 1

Back to TopTop