Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = betaine aldehyde dehydrogenase (BADH)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2365 KiB  
Article
Glycine Betaine Levels and BADH Activity of Juvenile Shrimp Litopenaeus vannamei in Response to Vibrio Bacterial Infection and Sudden Hyperosmotic Stress
by Silvia Gomez-Jimenez, Elisa M. Valenzuela-Soto, Julio C. Zamorano-Apodaca, Luis A. Gamez-Alejo and Cesar Muñoz-Bacasehua
Aquac. J. 2025, 5(1), 4; https://doi.org/10.3390/aquacj5010004 - 2 Feb 2025
Cited by 1 | Viewed by 977
Abstract
High evaporation rates due to solar intensity and low precipitation could represent a challenging culture environment in northwestern Mexico, generating osmotic stress in shrimp due to high salinity. Bacterial infections by pathogenic Vibrio strains are highly virulent in shrimp culture. This study evaluated [...] Read more.
High evaporation rates due to solar intensity and low precipitation could represent a challenging culture environment in northwestern Mexico, generating osmotic stress in shrimp due to high salinity. Bacterial infections by pathogenic Vibrio strains are highly virulent in shrimp culture. This study evaluated betaine aldehyde dehydrogenase (BADH) activity and glycine betaine (GB) levels in Litopenaeus vannamei under high salinity levels plus experimental infection with virulent Vibrio parahaemolyticus. At 35 ppt (control group) and 40 ppt after infection, GB levels increased two-fold in the gills except at 45 ppt and were significantly higher at 50 ppt. The highest GB levels were in the hepatopancreas of the uninfected group at 45 ppt. In the gills, BADH activity decreased after 2 h of exposure at 40 and 45 ppt; at 50 ppt, there was a significant increase in the uninfected groups. However, upon infection, activity increased at all salinities except 50 ppt. In the hepatopancreas of the uninfected groups, the highest activity was at 40 ppt and this was lowest at 50 ppt after 8 h. In the muscles, BADH was detectable at all salinities; infection caused an increase in its activity at 45 and 50 ppt. Despite sudden exposure to high salinity plus experimental infection, our results show that Litopenaeus vannamei does not inhibit BADH activity, allowing GB synthesis, which may play a role in shrimp survival under these conditions. Full article
Show Figures

Figure 1

11 pages, 3742 KiB  
Communication
Characterization of a Drought-Induced Betaine Aldehyde Dehydrogenase Gene SgBADH from Suaeda glauca
by Hangxia Jin, Min Tang, Longmin Zhu, Xiaomin Yu, Qinghua Yang and Xujun Fu
Plants 2024, 13(19), 2716; https://doi.org/10.3390/plants13192716 - 28 Sep 2024
Cited by 2 | Viewed by 1124
Abstract
Betaine aldehyde dehydrogenases (BADHs) are key enzymes in the biosynthesis of glycine betaine, which is an important organic osmolyte that maintains cell structure and improves plant tolerance to abiotic stresses, especially in halotolerant plants. Improving the drought tolerance of crops will greatly increase [...] Read more.
Betaine aldehyde dehydrogenases (BADHs) are key enzymes in the biosynthesis of glycine betaine, which is an important organic osmolyte that maintains cell structure and improves plant tolerance to abiotic stresses, especially in halotolerant plants. Improving the drought tolerance of crops will greatly increase their yield. In this study, a novel BADH gene named SgBADH from Suaeda glauca was induced by drought stress or abscisic acid. To explore the biological function of SgBADH, the SgBADH gene was transformed into Arabidopsis. Then, we found SgBADH-overexpressing Arabidopsis seedlings showed enhanced tolerance to drought stress. SgBADH transgenic Arabidopsis seedlings also had longer roots compared with controls under drought stress, while SgBADH-overexpressing Arabidopsis exhibited increased glycine betaine accumulation and decreased malondialdehyde (MDA) under drought stress. Our results suggest that SgBADH might be a positive regulator in plants during the response to drought. Full article
Show Figures

Figure 1

14 pages, 7746 KiB  
Article
CRISPR/Cas9-Mediated Targeted Mutagenesis of Betaine Aldehyde Dehydrogenase 2 (BADH2) in Tobacco Affects 2-Acetyl-1-pyrroline
by Mingli Chen, Siyu Shen, Zhiyuan Li, Huashun Wang, Jin Wang, Guangyu Yang, Wenwu Yang, Lele Deng, Daping Gong and Jianduo Zhang
Agronomy 2024, 14(2), 321; https://doi.org/10.3390/agronomy14020321 - 1 Feb 2024
Cited by 5 | Viewed by 2130
Abstract
2-acetyl-1-pyrroline (2AP) is a highly effective volatile compound that gives fragrance to numerous plant species and food. Mutation(s) in the betaine aldehyde dehydrogenase 2 (BADH2) gene results in the accumulation of 2AP. However, the function of BADH genes in tobacco ( [...] Read more.
2-acetyl-1-pyrroline (2AP) is a highly effective volatile compound that gives fragrance to numerous plant species and food. Mutation(s) in the betaine aldehyde dehydrogenase 2 (BADH2) gene results in the accumulation of 2AP. However, the function of BADH genes in tobacco (Nicotiana tabacum L.) remains poorly understood. In this study, we successfully obtained four betaine aldehyde dehydrogenase (BADH) genes from tobacco. Phylogenetic analysis of the protein sequences showed that two of the four BADH genes were closely related to the wolfberry (Lycium barbarum) BADH gene (LbBADH1), so we named them NtBADH1a and NtBADH1b, respectively. The other two BADH genes were orthologues of the tomato (Solanum lycopersicum) aminoaldehyde dehydrogenase 2 (SlAMADH2) gene, and were named NtBADH2a and NtBADH2b, respectively. Expression analysis revealed that the biological functions of NtBADH1a and NtBADH1b were different from those of genes NtBADH2a and NtBADH2b. We introduced mutations into NtBADH1a, NtBADH1b, NtBADH2a and NtBADH2b in tobacco using the CRISPR/Cas9 system and identified transgenic Ntbadh mutant tobacco lines. Single mutants (Ntbadh1a, Ntbadh1b, Ntbadh2a and Ntbadh2b) and double mutants (Ntbadh1a-Ntbadh1b and Ntbadh2a-Ntbadh2b) harbored deletion or insertion of nucleotides, both of which led to the production of a frameshift, preventing protein accumulation. A popcorn-like scent was noticeable in tobacco leaves from the Ntbadh2a-Ntbadh2b double mutant, but not from any single mutant or the Ntbadh1a-Ntbadh1b double mutant or the wild type. Consistent with this observation, we only detected 2AP in fresh leaves from the Ntbadh2a-Ntbadh2b double mutant. These findings indicate that only the combined inactivation of NtBADH2a and NtBADH2b results in 2AP accumulation in tobacco, which was not related to NtBADH1. Full article
Show Figures

Figure 1

13 pages, 2966 KiB  
Article
Combined Metabolomic and Quantitative RT-PCR Analyses Revealed the Synthetic Differences of 2-Acetyl-1-pyrroline in Aromatic and Non-Aromatic Vegetable Soybeans
by Man Zhao, Linlin Qian, Zhuoyu Chi, Xiaoli Jia, Fengjie Qi, Fengjie Yuan, Zhiqiang Liu and Yuguo Zheng
Int. J. Mol. Sci. 2022, 23(23), 14529; https://doi.org/10.3390/ijms232314529 - 22 Nov 2022
Cited by 5 | Viewed by 1819
Abstract
Aroma is an important economic trait of vegetable soybeans, which greatly influences their market value. The 2-acetyl-1-pyrroline (2AP) is considered as an important substance affecting the aroma of plants. Although the 2AP synthesis pathway has been resolved, the differences of the 2AP synthesis [...] Read more.
Aroma is an important economic trait of vegetable soybeans, which greatly influences their market value. The 2-acetyl-1-pyrroline (2AP) is considered as an important substance affecting the aroma of plants. Although the 2AP synthesis pathway has been resolved, the differences of the 2AP synthesis in the aromatic and non-aromatic vegetable soybeans are unknown. In this study, a broad targeted metabolome analysis including measurement of metabolites levels and gene expression levels was performed to reveal pathways of aroma formation in the two developmental stages of vegetable soybean grains [35 (S5) and 40 (S6) days after anthesis] of the ‘Zhexian No. 8’ (ZX8, non-aromatic) and ZK1754 (aromatic). The results showed that the differentially accumulated metabolites (DAMs) of the two varieties can be classified into nine main categories including flavonoids, lipids, amino acids and derivatives, saccharides and alcohols, organic acids, nucleotides and derivatives, phenolic acids, alkaloids and vitamin, which mainly contributed to their phenotypic differences. Furthermore, in combination with the 2AP synthesis pathway, the differences of amino acids and derivatives were mainly involved in the 2AP synthesis. Furthermore, 2AP precursors’ analysis revealed that the accumulation of 2AP mainly occurred from 1-pyrroline-5-carboxylate (P5C), not 4-aminobutyraldehyde (GABald). The quantitative RT-PCR showed that the associated synthetic genes were 1-pyrroline-5-carboxylate dehydrogenase (P5CDH), ∆1-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PRODH) and pyrroline-5-carboxylate reductase (P5CR), which further verified the synthetic pathway of 2AP. Furthermore, the betaine aldehyde dehydrogenase 2 (GmBADH2) mutant was not only vital for the occurrence of 2AP, but also for the synthesis of 4-aminobutyric acid (GABA) in vegetable soybean. Therefore, the differences of 2AP accumulation in aromatic and non-aromatic vegetable soybeans have been revealed, and it also provides an important theoretical basis for aromatic vegetable soybean breeding. Full article
Show Figures

Figure 1

18 pages, 17852 KiB  
Article
Impact of OsBadh2 Mutations on Salt Stress Response in Rice
by Zakaria H. Prodhan, Shah A. Islam, Mohammad S. Alam, Shan Li, Meng Jiang, Yuanyuan Tan and Qingyao Shu
Plants 2022, 11(21), 2829; https://doi.org/10.3390/plants11212829 - 24 Oct 2022
Cited by 10 | Viewed by 2870
Abstract
Mutations in the Betaine aldehyde dehydrogenase 2 (OsBadh2) gene resulted in aroma, which is a highly preferred grain quality attribute in rice. However, research on naturally occurring aromatic rice has revealed ambiguity and controversy regarding aroma emission, stress tolerance, and response [...] Read more.
Mutations in the Betaine aldehyde dehydrogenase 2 (OsBadh2) gene resulted in aroma, which is a highly preferred grain quality attribute in rice. However, research on naturally occurring aromatic rice has revealed ambiguity and controversy regarding aroma emission, stress tolerance, and response to salinity. In this study, mutant lines of two non-aromatic varieties, Huaidao#5 (WT_HD) and Jiahua#1 (WT_JH), were generated by targeted mutagenesis of OsBadh2 using CRISPR/Cas9 technology. The mutant lines of both varieties became aromatic; however, WT_HD mutants exhibited an improved tolerance, while those of WT_JH showed a reduced tolerance to salt stress. To gain insight into the molecular mechanism leading to the opposite effects, comparative analyses of the physiological activities and expressions of aroma- and salinity-related genes were investigated. The WT_HD mutants had a lower mean increment rate of malondialdehyde, superoxide dismutase, glutamate, and proline content, with a higher mean increment rate of γ-aminobutyric acid, hydrogen peroxide, and catalase than the WT_JH mutants. Fluctuations were also detected in the salinity-related gene expression. Thus, the response mechanism of OsBadh2 mutants is complicated where the genetic makeup of the rice variety and interactions of several genes are involved, which requires more in-depth research to explore the possibility of producing highly tolerant aromatic rice genotypes. Full article
(This article belongs to the Special Issue Plant Ecophysiological Adaptation to Environmental Stress)
Show Figures

Figure 1

19 pages, 5899 KiB  
Article
Haplotype Analysis of BADH1 by Next-Generation Sequencing Reveals Association with Salt Tolerance in Rice during Domestication
by Myeong-Hyeon Min, Thant Zin Maung, Yuan Cao, Rungnapa Phitaktansakul, Gang-Seob Lee, Sang-Ho Chu, Kyu-Won Kim and Yong-Jin Park
Int. J. Mol. Sci. 2021, 22(14), 7578; https://doi.org/10.3390/ijms22147578 - 15 Jul 2021
Cited by 14 | Viewed by 3678
Abstract
Betaine aldehyde dehydrogenase 1 (BADH1), a paralog of the fragrance gene BADH2, is known to be associated with salt stress through the accumulation of synthesized glycine betaine (GB), which is involved in the response to abiotic stresses. Despite the unclear [...] Read more.
Betaine aldehyde dehydrogenase 1 (BADH1), a paralog of the fragrance gene BADH2, is known to be associated with salt stress through the accumulation of synthesized glycine betaine (GB), which is involved in the response to abiotic stresses. Despite the unclear association between BADH1 and salt stress, we observed the responses of eight phenotypic characteristics (germination percentage (GP), germination energy (GE), germination index (GI), mean germination time (MGT), germination rate (GR), shoot length (SL), root length (RL), and total dry weight (TDW)) to salt stress during the germination stage of 475 rice accessions to investigate their association with BADH1 haplotypes. We found a total of 116 SNPs and 77 InDels in the whole BADH1 gene region, representing 39 haplotypes. Twenty-nine haplotypes representing 27 mutated alleles (two InDels and 25 SNPs) were highly (p < 0.05) associated with salt stress, including the five SNPs that have been previously reported to be associated with salt tolerance. We observed three predominant haplotypes associated with salt tolerance, Hap_2, Hap_18, and Hap_23, which were Indica specific, indicating a comparatively high number of rice accessions among the associated haplotypes. Eight plant parameters (phenotypes) also showed clear responses to salt stress, and except for MGT (mean germination time), all were positively correlated with each other. Different signatures of domestication for BADH1 were detected in cultivated rice by identifying the highest and lowest Tajima’s D values of two major cultivated ecotypes (Temperate Japonica and Indica). Our findings on these significant associations and BADH1 evolution to plant traits can be useful for future research development related to its gene expression. Full article
Show Figures

Figure 1

18 pages, 6180 KiB  
Article
Fragrance in Pandanus amaryllifolius Roxb. Despite the Presence of a Betaine Aldehyde Dehydrogenase 2
by Vacha Bhatt, Vitthal T. Barvkar, Agnelo Furtado, Robert J. Henry and Altafhusain Nadaf
Int. J. Mol. Sci. 2021, 22(13), 6968; https://doi.org/10.3390/ijms22136968 - 28 Jun 2021
Cited by 8 | Viewed by 3510
Abstract
Pandanus amaryllifolius Roxb. accumulates the highest concentration of the major basmati aroma volatile 2-acetyl-1-pyrroline (2AP) in the plant kingdom. The expression of 2AP is correlated with the presence of a nonfunctional betaine aldehyde dehydrogenase 2(BADH2) in aromatic rice and other plant species. In [...] Read more.
Pandanus amaryllifolius Roxb. accumulates the highest concentration of the major basmati aroma volatile 2-acetyl-1-pyrroline (2AP) in the plant kingdom. The expression of 2AP is correlated with the presence of a nonfunctional betaine aldehyde dehydrogenase 2(BADH2) in aromatic rice and other plant species. In the present study, a full-length BADH2 sequence was reconstructed from the transcriptome data of leaf tissue from P. amaryllifolius seedlings. Based on this sequence, a 1509 bp coding sequence was defined that encoded a 54 kD PaBADH2 protein. This revealed the presence of a full-length BADH2 protein in P. amaryllifolius. Moreover, quantitative real-time PCR analysis, combined with BADH2 enzyme activity, confirmed the expression and functionality of the PaBADH2 protein. To understand the apparent structural variation, docking analysis was carried out in which protein showed a good affinity with both betaine aldehyde (BAD) and γ-aminobutyraldehyde (GAB-ald) as substrates. Overall, the analysis showed the presence of a functional BADH2, along with substantial 2AP synthesis (4.38 ppm). Therefore, we conclude that unlike all other plants studied to date, 2AP biosynthesis in P. amaryllifolius is not due to the inactivation of BADH2. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 4035 KiB  
Article
Functional Characterization and Evolutionary Analysis of Glycine-Betaine Biosynthesis Pathway in Red Seaweed Pyropia yezoensis
by Yunxiang Mao, Nianci Chen, Min Cao, Rui Chen, Xiaowei Guan and Dongmei Wang
Mar. Drugs 2019, 17(1), 70; https://doi.org/10.3390/md17010070 - 21 Jan 2019
Cited by 17 | Viewed by 5285
Abstract
The red seaweed Pyropia yezoensis is an ideal research model for dissecting the molecular mechanisms underlying its robust acclimation to abiotic stresses in intertidal zones. Glycine betaine (GB) was an important osmolyte in maintaining osmotic balance and stabilizing the quaternary structure of complex [...] Read more.
The red seaweed Pyropia yezoensis is an ideal research model for dissecting the molecular mechanisms underlying its robust acclimation to abiotic stresses in intertidal zones. Glycine betaine (GB) was an important osmolyte in maintaining osmotic balance and stabilizing the quaternary structure of complex proteins under abiotic stresses (drought, salinity, etc.) in plants, animals, and bacteria. However, the existence and possible functions of GB in Pyropia remain elusive. In this study, we observed the rapid accumulation of GB in desiccated Pyropia blades, identifying its essential roles in protecting Pyropia cells against severe osmotic stress. Based on the available genomic and transcriptomic information of Pyropia, we computationally identified genes encoding the three key enzymes in the GB biosynthesis pathway: phosphoethanolamine N-methyltransferase (PEAMT), choline dehydrogenase (CDH), and betaine aldehyde dehydrogenase (BADH). Pyropia had an extraordinarily expanded gene copy number of CDH (up to seven) compared to other red algae. Phylogeny analysis revealed that in addition to the one conservative CDH in red algae, the other six might have originated from early gene duplication events. In dehydration stress, multiple CDH paralogs and PEAMT genes were coordinating up-regulated and shunted metabolic flux into GB biosynthesis. An elaborate molecular mechanism might be involved in the transcriptional regulation of these genes. Full article
Show Figures

Graphical abstract

12 pages, 1601 KiB  
Article
Effect of Gamma Irradiation on 2-Acetyl-1-pyrroline Content, GABA Content and Volatile Compounds of Germinated Rice (Thai Upland Rice)
by Sompong Sansenya, Yanling Hua, Saowapa Chumanee, Kannika Phasai and Chanun Sricheewin
Plants 2017, 6(2), 18; https://doi.org/10.3390/plants6020018 - 10 May 2017
Cited by 24 | Viewed by 5630
Abstract
Aroma intensity in rice is related to the level of 2-acetyl-1-pyrroline (2AP). The accumulation of 2AP in rice has been synthesized via l-proline metabolism by inactive betaine aldehyde dehydrogenase enzyme (BADH2), which activates 2AP accumulation. Meanwhile, active BADH2 inhibits 2AP accumulation but [...] Read more.
Aroma intensity in rice is related to the level of 2-acetyl-1-pyrroline (2AP). The accumulation of 2AP in rice has been synthesized via l-proline metabolism by inactive betaine aldehyde dehydrogenase enzyme (BADH2), which activates 2AP accumulation. Meanwhile, active BADH2 inhibits 2AP accumulation but activates γ-aminobutyric acid (GABA) accumulation. The improvement of 2AP content in rice has been reported under certain conditions, such as high salinity, water treatment, and reduction of high intensity solar exposure. In this study, we conducted the effects of gamma irradiation on 2AP content, GABA content and volatile compounds of germinated rice (Thai upland rice). Our results showed that the GABA content was highest when rice seeds germinated within a 24-h. The 2AP content of irradiated rice (germinated within a 24-h duration) was higher than non-irradiated rice for all gamma doses, particularly at 20 Gy, which showed a 23-fold higher level of 2AP than non-irradiated rice. On the other hand, the reduction of the GABA content of irradiated rice was caused by an increase in the gamma dose. At 300 Gy, irradiated rice had a GABA content approximately 2.6-fold lower than non-irradiated rice. Moreover, we observed that a reduction of volatile compounds occurred when increasing gamma dose. However, some volatile compounds appeared in the irradiated rice at gamma doses of 60 Gy, 80 Gy, 100 Gy and 300 Gy. Furthermore, we observed that the level of Octanal, which is the compound most related to aroma intensity, of irradiated rice was stronger than that of non-irradiated rice. Our results demonstrate for the first time that 2AP and GABA contents are sensitive to gamma irradiation conditions. Moreover, the results indicate that the gamma irradiation technique can be used to improve the aroma intensity of rice. Full article
Show Figures

Figure 1

14 pages, 230 KiB  
Article
Modulation Role of Abscisic Acid (ABA) on Growth, Water Relations and Glycinebetaine Metabolism in Two Maize (Zea mays L.) Cultivars under Drought Stress
by Lixin Zhang, Mei Gao, Jingjiang Hu, Xifeng Zhang, Kai Wang and Muhammad Ashraf
Int. J. Mol. Sci. 2012, 13(3), 3189-3202; https://doi.org/10.3390/ijms13033189 - 8 Mar 2012
Cited by 79 | Viewed by 10260
Abstract
The role of plant hormone abscisic acid (ABA) in plants under drought stress (DS) is crucial in modulating physiological responses that eventually lead to adaptation to an unfavorable environment; however, the role of this hormone in modulation of glycinebetaine (GB) metabolism in maize [...] Read more.
The role of plant hormone abscisic acid (ABA) in plants under drought stress (DS) is crucial in modulating physiological responses that eventually lead to adaptation to an unfavorable environment; however, the role of this hormone in modulation of glycinebetaine (GB) metabolism in maize particularly at the seedling stage is still poorly understood. Some hydroponic experiments were conducted to investigate the modulation role of ABA on plant growth, water relations and GB metabolism in the leaves of two maize cultivars, Zhengdan 958 (ZD958; drought tolerant), and Jundan 20 (JD20; drought sensitive), subjected to integrated root-zone drought stress (IR-DS) simulated by the addition of polyethylene glycol (PEG, 12% w/v, MW 6000). The IR-DS substantially resulted in increased betaine aldehyde dehydrogenase (BADH) activity and choline content which act as the key enzyme and initial substrate, respectively, in GB biosynthesis. Drought stress also induced accumulation of GB, whereas it caused reduction in leaf relative water content (RWC) and dry matter (DM) in both cultivars. The contents of ABA and GB increased in drought-stressed maize seedlings, but ABA accumulated prior to GB accumulation under the drought treatment. These responses were more predominant in ZD958 than those in JD20. Addition of exogenous ABA and fluridone (Flu) (ABA synthesis inhibitor) applied separately increased and decreased BADH activity, respectively. Abscisic acid application enhanced GB accumulation, leaf RWC and shoot DM production in both cultivars. However, of both maize cultivars, the drought sensitive maize cultivar (JD20) performed relatively better than the other maize cultivar ZD958 under both ABA and Flu application in view of all parameters appraised. It is, therefore, concluded that increase in both BADH activity and choline content possibly resulted in enhancement of GB accumulation under DS. The endogenous ABA was probably involved in the regulation of GB metabolism by regulating BADH activity, and resulting in modulation of water relations and plant growth under drought, especially in the drought sensitive maize cultivar JD20. Full article
Show Figures

Back to TopTop