Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = berthierine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2299 KiB  
Article
Berthierine-2H1 from Lovozero Alkaline Massif, Kola Peninsula, Russia: First Structure Model for Berthierine and Complexity-Stability Relations
by Sergey V. Krivovichev, Victor N. Yakovenchuk, Olga F. Goychuk, Yakov A. Pakhomovskii and Vladimir G. Krivovichev
Minerals 2025, 15(1), 13; https://doi.org/10.3390/min15010013 - 26 Dec 2024
Cited by 1 | Viewed by 1148
Abstract
Berthierine was found in a natrolite vein intersecting volcanogenic-sedimentary rocks on the slope of Mt. Quamdespakh in the upper reaches of the Suolwai River, Lovozero alkaline massif, Kola peninsula, Russian Arctic. The mineral occurs as well-formed translucent pyramidal crystals up to 250 μm [...] Read more.
Berthierine was found in a natrolite vein intersecting volcanogenic-sedimentary rocks on the slope of Mt. Quamdespakh in the upper reaches of the Suolwai River, Lovozero alkaline massif, Kola peninsula, Russian Arctic. The mineral occurs as well-formed translucent pyramidal crystals up to 250 μm in size. The chemical composition determined by electron microprobe analysis corresponds to the empirical formula VI(Fe2+1.99Al0.94Mg0.03Mn0.04)Σ3.00[IV(Si1.15Al0.85)Σ2.00O5] [(OH)3.92O0.08]Σ4.00; the idealized formula is VI(Fe2+2Al)[IV(SiAl)O5](OH)4. The crystal-structure determination (the first detailed crystal-structure characterization of berthierine) shows that the Lovozero mineral is hexagonal, P63cm (a = 5.3903(4), c = 14.0146(10) Å, V = 352.64(6) Å3, R1 = 0.053 for 338 unique observed reflections), and corresponds to the 2H1 polytype of serpentine-group minerals with 1:1 tetrahedral-octahedral layers. The unit cell contains two M3[T2O5](OH)4 layers (M = Fe2+,Al; T = Si,Al) stacked along the c axis. The calculations of information-based structural and topological complexity parameters indicate that berthierine is structurally and topologically simpler than its chlorite-group polymorph chamosite. Since berthierine usually crystallizes metastably in the stability field of chamosite, the complexity analysis is agreement with the Goldsmith rule that states that, in Ostwald sequences of crystallization, metastable phases are simpler and more disordered than their stable counterparts. This observation can be applied to a general case of the metastable formation of serpentine-group minerals prior to the crystallization of chlorites. Full article
Show Figures

Figure 1

21 pages, 10837 KiB  
Article
Holocene Glaucony from the Guadiana Shelf, Northern Gulf of Cadiz (SW Iberia): New Genetic Insights in a Sequence Stratigraphy Context
by Adrián López-Quirós, Francisco José Lobo, Isabel Mendes and Fernando Nieto
Minerals 2023, 13(2), 177; https://doi.org/10.3390/min13020177 - 26 Jan 2023
Cited by 8 | Viewed by 2901
Abstract
Glaucony occurrences have been reported both from exposed transgressive and overlying highstand system tracts. However, its occurrences within highstand deposits are often invoked as the result of underlying condensed section reworking. Detailed textural, mineralogical and geochemical reports of glaucony grains in highstand deposits [...] Read more.
Glaucony occurrences have been reported both from exposed transgressive and overlying highstand system tracts. However, its occurrences within highstand deposits are often invoked as the result of underlying condensed section reworking. Detailed textural, mineralogical and geochemical reports of glaucony grains in highstand deposits remain elusive. The northern Gulf of Cadiz shelf (SW Iberia) offers a unique opportunity to investigate late Holocene glaucony authigenesis in a well-documented time-stratigraphic context, where transgressive deposits are locally exposed on the seafloor and are laterally draped by highstand muddy deposits. In this study, glaucony grains extracted from a core retrieved from a highstand muddy depocenter off the Guadiana River were investigated by means of digital microscopy, X-ray diffraction (XRD), and electron microscopic methods (FESEM-EDX and TEM-HRTEM). To better constrain the glaucony origin (autochthonous vs. allochthonous) in highstand muddy deposits, glaucony grains from surficial samples—taken from exposed transgressive deposits—were also investigated. Glauconitization in the studied core can be largely attributed to the replacement of faecal pellets from c. ~4.2–1.0 cal. ka BP. Both XRD and TEM-HRTEM analyses indicate that glaucony consists mainly of an R1, with a minor presence of R0, smectite-rich (nontronite) glauconite-smectite mixed-layer silicate, made up of 35–75% glauconitic layers and 65–25% of interstratified smectite layers. At the mineral lattice level, minor individual 7Å layers (berthierine) were also identified by HRTEM. Shallow radial cracks at the pellet surface, along with globular and vermiform-like biomorphic to low packing density lamellar-flaky nanostructures, mineralogical properties, and K-poor content (average 0.4 atoms p.f.u.) indicate a scarcely mature glauconitization process, attesting to formation of the grains in situ (autochthonous). Glaucony grains from exposed transgressive deposits, i.e., in the tests of calcareous benthic foraminifera, do not share a genetic relationship with the grains investigated in the highstand deposits, thus supporting the autochthonous origin of glaucony within the highstand deposits. Our combined dataset provides evidence of a multiphase history for autochthonous glaucony formation in the Guadiana shelf, as its genesis is traced to both transgressive and highstand conditions. While eustatic sea-level changes favoured glaucony formation under transgressive conditions, factors such as protracted low sediment supply and the establishment of a strong nutrient-rich upwelling system in the study area promoted glaucony development during late Holocene highstand conditions. Full article
(This article belongs to the Special Issue Formation and Evolution of Glauconite. New Scale Approach)
Show Figures

Figure 1

34 pages, 5623 KiB  
Article
Diagenesis and the Conditions of Deposition of the Middle Jurassic Siderite Rocks from the Northern Margin of the Holy Cross Mountains (Poland)
by Aleksandra Kozłowska, Anna Feldman-Olszewska, Marta Kuberska and Anna Maliszewska
Minerals 2021, 11(12), 1353; https://doi.org/10.3390/min11121353 - 30 Nov 2021
Cited by 2 | Viewed by 3240
Abstract
The aim of the present study is to reconstruct sedimentary conditions of Middle Jurassic rocks that contain siderites to identify the mineral composition of the inserbeds and to recognize the origin of the siderite. Thin inserbeds of siderite rocks occur most frequently within [...] Read more.
The aim of the present study is to reconstruct sedimentary conditions of Middle Jurassic rocks that contain siderites to identify the mineral composition of the inserbeds and to recognize the origin of the siderite. Thin inserbeds of siderite rocks occur most frequently within Bajocian siliciclastic deposits and, more rarely, Aalenian and Bathonian. The research material comes from 11 boreholes located in the north and northeastern margins of the Holy Cross Mountains. The research methods included sedimentological analyses, and studies in polarizing and scanning electron microscopes, staining of carbonates, cathodoluminescence, X-ray structural analysis, and stable carbon and oxygen isotopic determinations were used. Middle Jurassic sideritic rocks are most often represented by clayey siderites, which also include muddy and sandy varieties and siderite sandstones. There are also local occurrences of coquinas, claystones, mudstones, and siderite conglomerates. The main component of sideritic rocks is sideroplesite. Berthierine, pistomesite, calcite, and ankerite are important components, too. The action of diagenetic processes of cementation, compaction, replacement, and alteration within the Middle Jurassic deposits was most intense during the eo- and mesodiagenesis. The sedimentological analysis showed that most of the studied siderites were formed in a low-oxygenated marine environment, mainly in the transition zone between the normal and storm wave bases and in the lower and middle shoreface zones. The results of the petrographic, mineralogical, and geochemical studies indicated the origin of the sideritic rocks mainly in the marine environment, with the participation of meteoric water. There were slight differences in the chemical composition of sideroplesite depending on the environment it crystallized in. There was no correlation between the values of the carbon isotope determinations in the sideroplesite and the environmental conditions of its crystallization. Slight differences were visible in the case of the average values of δ18O in the sideroplesite. Full article
Show Figures

Figure 1

38 pages, 13596 KiB  
Article
Reservoir Quality of Upper Jurassic Corallian Sandstones, Weald Basin, UK
by Dinfa Vincent Barshep and Richard Henry Worden
Geosciences 2021, 11(11), 446; https://doi.org/10.3390/geosciences11110446 - 29 Oct 2021
Cited by 13 | Viewed by 4563
Abstract
The Upper Jurassic, shallow marine Corallian sandstones of the Weald Basin, UK, are significant onshore reservoirs due to their future potential for carbon capture and storage (CCS) and hydrogen storage. These reservoir rocks, buried to no deeper than 1700 m before uplift to [...] Read more.
The Upper Jurassic, shallow marine Corallian sandstones of the Weald Basin, UK, are significant onshore reservoirs due to their future potential for carbon capture and storage (CCS) and hydrogen storage. These reservoir rocks, buried to no deeper than 1700 m before uplift to 850 to 900 m at the present time, also provide an opportunity to study the pivotal role of shallow marine sandstone eodiagenesis. With little evidence of compaction, these rocks show low to moderate porosity for their relatively shallow burial depths. Their porosity ranges from 0.8 to 30% with an average of 12.6% and permeability range from 0.01 to 887 mD with an average of 31 mD. The Corallian sandstones of the Weald Basin are relatively poorly studied; consequently, there is a paucity of data on their reservoir quality which limits any ability to predict porosity and permeability away from wells. This study presents a potential first in the examination of diagenetic controls of reservoir quality of the Corallian sandstones, of the Weald Basin’s Palmers Wood and Bletchingley oil fields, using a combination of core analysis, sedimentary core logs, petrography, wireline analysis, SEM-EDS analysis and geochemical analysis to understand the extent of diagenetic evolution of the sandstones and its effects on reservoir quality. The analyses show a dominant quartz arenite lithology with minor feldspars, bioclasts, Fe-ooids and extra-basinal lithic grains. We conclude that little compactional porosity-loss occurred with cementation being the main process that caused porosity-loss. Early calcite cement, from neomorphism of contemporaneously deposited bioclasts, represents the majority of the early cement, which subsequently prevented mechanical compaction. Calcite cement is also interpreted to have formed during burial from decarboxylation-derived CO2 during source rock maturation. Other cements include the Fe-clay berthierine, apatite, pyrite, dolomite, siderite, quartz, illite and kaolinite. Reservoir quality in the Corallian sandstones show no significant depositional textural controls; it was reduced by dominant calcite cementation, locally preserved by berthierine grain coats that inhibited quartz cement and enhanced by detrital grain dissolution as well as cement dissolution. Reservoir quality in the Corallian sandstones can therefore be predicted by considering abundance of calcite cement from bioclasts, organically derived CO2 and Fe-clay coats. Full article
(This article belongs to the Collection Early Career Scientists’ (ECS) Contributions to Geosciences)
Show Figures

Figure 1

20 pages, 7042 KiB  
Article
Kaolinite-to-Chlorite Conversion from Si,Al-Rich Fluid-Origin Veins/Fe-Rich Carboniferous Shale Interaction
by Franck Bourdelle, Michel Dubois, Emily Lloret, Cyril Durand, Ahmed Addad, Schéhérazade Bounoua, Sandra Ventalon and Philippe Recourt
Minerals 2021, 11(8), 804; https://doi.org/10.3390/min11080804 - 26 Jul 2021
Cited by 15 | Viewed by 4137
Abstract
The kaolinite-to-chlorite conversion is one of the chloritization processes that occurs in low temperature diagenetic and hydrothermal systems. The mechanism of this mineralogical transformation is still under discussion, since direct transformation, conversion via berthierine as intermediate phase or direct formation of berthierine/chlorite mix, [...] Read more.
The kaolinite-to-chlorite conversion is one of the chloritization processes that occurs in low temperature diagenetic and hydrothermal systems. The mechanism of this mineralogical transformation is still under discussion, since direct transformation, conversion via berthierine as intermediate phase or direct formation of berthierine/chlorite mix, either by dissolution-crystallization or by solid state transformation (or a combination of both), are all hypotheses put forward. In this context, each description of a kaolinite-to-chlorite conversion occurrence becomes an opportunity to shed new light and to renew this debate. Studying Carboniferous shale–crosscut by large quartz-kaolinite veins–from the mining basin of the North of France, we report therefore an uncommon kaolinite-Fe-rich chlorite assemblage. This assemblage appears as a chlorite fringe 20 µm wide along the interfaces between the shale and the quartz-kaolinite veins. All petrographical, mineralogical and chemical data suggest that the Fe-chlorite results from the interaction between the shale, providing the Fe,Mg supply, and the Si,Al-rich veins, leading to the chloritization of the kaolinite at a small scale via at least one dissolution-recrystallisation step. High-resolution observations highlight that neoformed Fe-rich chlorite contains some 7Å isochemical layers, as relict of berthierine. Therefore, we advance that the conversion takes place either through the precipitation of berthierine following by a second step involving solid state berthierine-chlorite conversion, or through the direct precipitation of a chlorite-rich/berthierine-poor mix driven by the Fe/(Fe + Mg) ratio, at low temperature and in reducing conditions. The comparison of our data with the recent literature allows to prefer the second hypothesis. Full article
(This article belongs to the Special Issue Advances in Low-Temperature Mineralogy and Geochemistry)
Show Figures

Figure 1

39 pages, 18793 KiB  
Article
Mineral Matter in the Late Permian C1 Coal from Yunnan Province, China, with Emphasis on Its Origins and Modes of Occurrence
by Xiao Li, Shifeng Dai, Victor P. Nechaev, Ian T. Graham, David French, Xibo Wang, Lei Zhao and Jingtao Zhao
Minerals 2021, 11(1), 19; https://doi.org/10.3390/min11010019 - 25 Dec 2020
Cited by 20 | Viewed by 5153
Abstract
This paper reports the mineralogy and geochemistry of the Late Permian C1 Coal from Bole and Laibin mines in eastern Yunnan, Southwestern China (C1 Coal in Laibin mine is composed of three layers termed B1, B2, and B3). The coals are characterized by [...] Read more.
This paper reports the mineralogy and geochemistry of the Late Permian C1 Coal from Bole and Laibin mines in eastern Yunnan, Southwestern China (C1 Coal in Laibin mine is composed of three layers termed B1, B2, and B3). The coals are characterized by medium-high ash yields and very low sulfur contents. Compared with average values of trace element concentrations in hard coals worldwide, the Bole and Laibin coals are enriched in V, Co, Cu, Zn, and Se, which were mainly derived from the sediment-source region of the Kangdian Upland. Major minerals in the coal samples and roof and floor strata include quartz, interstratified berthierine/chamosite (B/C), as well as kaolinite, mixed layer illite/smectite, calcite, pyrite, and anatase. Unlike a pure chamosite, the 7 Å peak of interstratified B/C is sharp and narrow, while the 14 Å peak is broad and weak, or absent in some coal samples. Interstratified B/C was largely precipitated from low-temperature Fe-rich and Mg-rich hydrothermal fluids or, in some cases, is an alteration product of kaolinite. Secondary phases of quartz, calcite, pyrite, kaolinite, chalcopyrite, gypsum, and REE-phosphates in the coal samples are the dominant authigenic minerals formed at syngenetic and early diagenetic stages. Four intra-seam partings in C1 Coal, B1, and B3 layers are identified as tonsteins derived from felsic volcanic ashes. These tonsteins consist mainly of cryptocrystalline kaolinite with graupen and vermicular textures, and minor amounts of high-temperature quartz, zircon, apatite, monazite, and anatase. The floor of the C1 Coal in the Bole mine is a tuffaceous claystone and consists of altered high-Ti basalt volcaniclastics, characterized by high concentrations of Zr, Nb, V, Co, Cu, and Zn, low Al2O3/TiO2 ratio (~4.62), high Ti/Y ratio (~900), enrichment of middle rare earth elements, and positive Eu anomalies. Full article
Show Figures

Figure 1

16 pages, 6877 KiB  
Article
Minerals of Rare Earth Elements in High-Phosphorus Ooidal Ironstones of the Western Siberia and Turgai Depression
by Maxim Rudmin, Igor Reva, Ella Sokol, Elshan Abdullayev, Aleksey Ruban, Andrey Kudryavtsev, Oleg Tolkachev and Aleksey Mazurov
Minerals 2020, 10(1), 11; https://doi.org/10.3390/min10010011 - 21 Dec 2019
Cited by 19 | Viewed by 6136
Abstract
The aim of this research was to study the rare earth (REE) minerals in ooidal ironstone deposits of the West Siberian basin and the Turgai depression. Authigenic minerals (monazite and cerite) were described, and their main mineral form was identified as light rare [...] Read more.
The aim of this research was to study the rare earth (REE) minerals in ooidal ironstone deposits of the West Siberian basin and the Turgai depression. Authigenic minerals (monazite and cerite) were described, and their main mineral form was identified as light rare earth element phosphate (LREE-phosphate) in this study. LREE-phosphate is included in ferruginous ooids, peloids, and oncoids and forms a consistent mineral association with Fe-hydroxides (goethite and its hydrated amorphous derivatives) and Fe-rich layered silicates (Fe-illite-smectite, chamosite, berthierine). The constancy of the mineral association in two deposits of different ages indicates a general mechanism behind the formation of these minerals. LREE-phosphates (authigenic monazite) are characterized by microscopic sizes (up to 24 μm), diverse morphology (mainly spherical or xenomorphic), and occupy spaces between the micro-cortex in ferruginous spheroids. This mineral can be found in other deposits of ooidal ironstone. According to its mineralogical and chemical characteristics, LREE-phosphate mainly belongs to the authigenic (nodular or “gray”) monazite. However, the incomplete (not 100%) correspondence of Kikuchi bands with the reference monazite does not allow its reliable identification. Based on its small size, chemical leaching or bacterial interaction is recommended to extract REE from ooidal ironstone while predicting the associated removal of phosphorus from iron ore due to its dominant phosphate mineral form. Ooidal ironstone should be considered a complex deposit and an unconventional natural type of REE ores as an example of the largest Bakchar and Lisakovsk deposits. Full article
Show Figures

Figure 1

16 pages, 4191 KiB  
Article
Clay Mineralogy of Coal-Hosted Nb-Zr-REE-Ga Mineralized Beds from Late Permian Strata, Eastern Yunnan, SW China: Implications for Paleotemperature and Origin of the Micro-Quartz
by Lixin Zhao, Shifeng Dai, Ian T. Graham and Peipei Wang
Minerals 2016, 6(2), 45; https://doi.org/10.3390/min6020045 - 17 May 2016
Cited by 46 | Viewed by 8745
Abstract
The clay mineralogy of pyroclastic Nb(Ta)-Zr(Hf)-REE-Ga mineralization in Late Permian coal-bearing strata from eastern Yunnan Province; southwest China was investigated in this study. Samples from XW and LK drill holes in this area were analyzed using XRD (X-ray diffraction) and SEM (scanning electronic [...] Read more.
The clay mineralogy of pyroclastic Nb(Ta)-Zr(Hf)-REE-Ga mineralization in Late Permian coal-bearing strata from eastern Yunnan Province; southwest China was investigated in this study. Samples from XW and LK drill holes in this area were analyzed using XRD (X-ray diffraction) and SEM (scanning electronic microscope). Results show that clay minerals in the Nb-Zr-REE-Ga mineralized samples are composed of mixed layer illite/smectite (I/S); kaolinite and berthierine. I/S is the major component among the clay assemblages. The source volcanic ashes controlled the modes of occurrence of the clay minerals. Volcanic ash-originated kaolinite and berthierine occur as vermicular and angular particles, respectively. I/S is confined to the matrix and is derived from illitization of smectite which was derived from the original volcanic ashes. Other types of clay minerals including I/S and berthierine precipitated from hydrothermal solutions were found within plant cells; and coexisting with angular berthierine and vermicular kaolinite. Inferred from the fact that most of the I/S is R1 ordered with one case of the R3 I/S; the paleo-diagenetic temperature could be up to 180 °C but mostly 100–160 °C. The micro-crystalline quartz grains (<10 µm) closely associated with I/S were observed under SEM and were most likely the product of desiliconization during illitization of smectite. Full article
(This article belongs to the Special Issue Minerals in Coal)
Show Figures

Figure 1

Back to TopTop