Holocene Glaucony from the Guadiana Shelf, Northern Gulf of Cadiz (SW Iberia): New Genetic Insights in a Sequence Stratigraphy Context
Abstract
:1. Introduction
2. Geological Setting and Stratigraphic Framework
2.1. Shelf Sediment Sources
2.2. Surficial Sediment Distribution and Glaucony Occurrences
2.3. Oceanographic Conditions
2.4. Postglacial Evolution: Sediment Deposition Controlled by Sea-Level and Climatic Changes and by Anthropogenic Activities
3. Material and Methods
4. Results and Interpretation
4.1. Core 5: Holocene Glaucony Occurrences
4.1.1. Glaucony Abundance, Grain Type, Morphology and Nanostructure
4.1.2. Glaucony Grain Mineralogy
4.1.3. Glaucony Grain Chemical Composition and Structural Formulae
4.2. Surface Samples: Glaucony from Exposed Transgressive Deposits
5. Discussion
5.1. The Glauconitization Process on the Guadiana Shelf
5.2. Glaucony in a Sequence-Stratigraphic Framework
5.2.1. Autochthonous versus Allochthonous Origin
5.2.2. Factors Influencing the (Bio)availability of Fe during Highstand Conditions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amorosi, A. Glaucony and sequence stratigraphy: A conceptual framework of distribution in siliciclastic sequences. J. Sediment. Res. 1995, B65, 419–425. [Google Scholar]
- Stonecipher, S.A. Genetic characteristic of glauconite and siderite: Implications for the origin of ambiguous isolated marine sandbodies. In Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentological Interpretation; Bergman, K.M., Snedden, J.W., Eds.; SEPM Special Publications: Broken Arrow, OK, USA, 1999; Volume 64, pp. 191–204. [Google Scholar]
- Morad, S.; Ketzer, J.M.; De Ros, F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins. Sedimentology 2000, 47, 95–120. [Google Scholar] [CrossRef]
- Taylor, K.G.; Macquaker, J.H.S. Spatial and temporal distribution of authigenic minerals in continental shelf sediments: Implications for sequence stratigraphic analysis. In Marine Authigenesis: From Globial to Microbial; Glenn, C.R., Prevot-Lucas, L., Lucas, J., Eds.; SEPM Special Publications: Broken Arrow, OK, USA, 2000; Volume 66, pp. 309–323. [Google Scholar]
- Ketzer, J.M.; Holz, M.; Morad, S.; Al-Aasm, I.S. Sequence stratigraphic distribution of diagenetic alterations in coal-bearing, paralic sandstones: Evidence from the Rio Bonito Formation (Early Permian), southern Brazil. Sedimentology 2003, 50, 855–877. [Google Scholar] [CrossRef]
- Al-Ramadan, K.; Morad, S.; Proust, J.N.; Al-Aasm, I. Distribution of diagenetic alterations in siliciclastic shoreface deposits within a sequence stratigraphic framework: Evidence from the Upper Jurassic, Boulonnais, NW France. J. Sediment. Res. 2005, 75, 943–959. [Google Scholar] [CrossRef]
- Amorosi, A. The occurrence of glaucony in the stratigraphic record: Distribution patterns and sequence stratigraphic significance. Int. Assoc. Sedimentol. Spec. Publ. 2012, 45, 37–54. [Google Scholar]
- Huggett, J.M. Minerals: Glauconites and Green Clays, Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Bornhold, B.D.; Giresse, P. Glauconitic sediments on the continental shelf off Vancouver Island, British Columbia, Canada. J. Sediment. Petrol. 1985, 55, 653–664. [Google Scholar]
- Odin, G.S. Green Marine Clays. In Develop Sediment 45; Elsevier: Amsterdam, The Netherlands, 1988; p. 444. [Google Scholar]
- Giresse, P.; Wiewiora, A. Stratigraphic condensed deposition and diagenetic evolution of green clay minerals in deep water sediments on the Ivory Coast-Ghana Ridge. Mar. Geol. 2001, 179, 51–70. [Google Scholar] [CrossRef]
- Cuadros, J.; Dekov, V.M.; Arroyo, X.; Nieto, F. Smectite formation in submarine hydrothermal sediments: Samples from the HMS Challenger Expedition (1872–1776). Clays Clay Miner. 2011, 59, 147–164. [Google Scholar] [CrossRef]
- Baldermann, A.; Warr, L.N.; Grathoff, G.H.; Dietzel, M. The rate and mechanism of deep-sea glauconite formation at the Ivory Coast-Ghana Marginal Ridge. Clays Clay Miner. 2013, 61, 258–276. [Google Scholar] [CrossRef]
- El Albani, A.; Meunier, A.; Fürsich, F. Unusual occurrence of glauconite in a shallow lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France). Terra Nova 2005, 17, 537–544. [Google Scholar] [CrossRef]
- Baldermann, A.; Grathoff, G.H.; Nickel, C. Micromilieu-controlled glauconitization in fecal pellets at Oker (Central Germany). Clay Miner. 2012, 47, 513–538. [Google Scholar] [CrossRef]
- Huggett, J.M.; Cuadros, J. Glauconite formation in lacustrine/palaeosol sediments, Isle of Wight (Hampshire Basin), UK. Clay Miner. 2010, 45, 35–49. [Google Scholar] [CrossRef]
- Odin, G.S.; Matter, A. De glauconiarum origine. Sedimentology 1981, 28, 611–641. [Google Scholar] [CrossRef]
- Meunier, A.; El Albani, A. The glauconite-Fe-illite-Fe-smectite problem: A critical review. Terra Nova 2007, 19, 95–104. [Google Scholar] [CrossRef]
- Banerjee, S.; Bansal, U.; Thorat, A. A review on palaeogeographic implications and temporal variation in glaucony composition. J. Paleogeogr. 2016, 5, 43–71. [Google Scholar] [CrossRef] [Green Version]
- Rudmin, M.; Banerjee, S.; Mazurov, A. Compositional variation of glauconites in Upper Cretaceous-Paleogene sedimentary iron-ore deposits in South-eastern Western Siberia. Sediment. Geol. 2017, 355, 20–30. [Google Scholar] [CrossRef]
- López-Quirós, A.; Escutia, C.; Etourneau, J.; Rodríguez-Tovar, F.J.; Roignant, S.; Lobo, F.J.; Thompson, N.; Bijl, P.K.; Bohoyo, F.; Salzmann, U.; et al. Eocene-Oligocene paleoenvironmental changes in the South Orkney Microcontinent (Antarctica) linked to the opening of Powell Basin. Glob. Planet. Change 2021, 204, 103581. [Google Scholar] [CrossRef]
- Wiewióra, A.; Giresse, P.; Petit, S.; Wilamowski, A. A deep-water glauconitization process on the Ivory Coast–Ghana Marginal Ridge (ODP site 959): Determination of Fe3+-rich montmorillonite in green grains. Clays Clay Miner. 2001, 49, 540–558. [Google Scholar] [CrossRef]
- Giresse, P. Chapter 12 some aspects of diagenesis in contourites. In Developments in Sedimentology; Rebesco, M., Camerlenghi, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 203–221. [Google Scholar]
- Lobo, F.J.; Hernández-Molina, F.J.; Somoza, L.; Díaz del Río, V. The sedimentary record of the post-glacial transgression on the Gulf of Cadiz continental shelf (Southwest Spain). Mar. Geol. 2001, 178, 171–195. [Google Scholar] [CrossRef]
- Lobo, F.J.; Sánchez, R.; González, R.; Dias, J.M.A.; Hernandez-Molina, F.J.; Fernández-Salas, L.M.; Díaz del Río, V.; Mendes, I. Contrasting styles of the Holocene highstand sedimentation and sediment dispersal systems in the northern shelf of the Gulf of Cadiz. Cont. Shelf Res. 2004, 24, 461–482. [Google Scholar] [CrossRef]
- Lobo, F.J.; Ridente, D. Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins: An overview. Mar. Geol. 2014, 352, 215–247. [Google Scholar] [CrossRef]
- Gonzalez, R.; Dias, J.M.A.; Lobo, F.; Mendes, I. Sedimentological and paleoenvironmental characterisation of transgressive sediments on the Guadiana Shelf (Northern Gulf of Cadiz, SW Iberia). Quat. Int. 2004, 120, 133–144. [Google Scholar] [CrossRef]
- Carrión-Torrente, A.; Lobo, F.J.; Puga-Bernabéu, A.; Mendes, I.; Lebreiro, S.; Garcia, M.; van Rooij, D.; Lujan, M.; Reguera, M.I.; Antón, L. Episodic postglacial deltaic pulses in the Gulf of Cadiz: Implications for the development of a transgressive shelf and driving environmental conditions. J. Sediment. Res. 2022, 92, 1–25. [Google Scholar] [CrossRef]
- Mendes, I.; Dias, J.A.; Schönfeld, J.; Ferreira, Ó.; Rosa, F.; Gonzalez, R.; Lobo, F.J. Natural and human-induced Holocene paleoenvironmental changes, on the Guadiana shelf (northern Gulf of Cadiz). Holocene 2012, 22, 1011–1024. [Google Scholar] [CrossRef] [Green Version]
- Hanebuth, T.J.J.; King, M.L.; Lobo, F.J.; Mendes, I. Formation history and material budget of holocene shelf mud depocenters in the Gulf of Cadiz. Sediment. Geol. 2021, 421, 105956. [Google Scholar] [CrossRef]
- Loureiro, J.J.M.; Nunes, M.N.F.; Machado, M.L.R. A Bacia Hidrográfica do Rio Guadiana. In Monografias Hidrológicas dos Principais Cursos de Água de Portugal Continental; Direcção Geral dos Recursos e Aproveitamentos: Lisboa, Portugal, 1986; pp. 341–407. [Google Scholar]
- Mendes, I.; Lobo, F.J.; Hanebuth, T.J.J.; López-Quirós, A.; Schönfeld, J.; Lebreiro, S.; Reguera, M.I.; Antón, L.; Ferreira, Ó. Temporal variability of flooding events of Guadiana River (Iberian Peninsula) during the middle to late Holocene: Imprints in the shallow-marine sediment record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 556, 109900. [Google Scholar] [CrossRef]
- Morales, J.A. Evolution and facies architecture of the mesotidal Guadiana River delta (S.W. Spain-Portugal). Mar. Geol. 1997, 138, 127–148. [Google Scholar] [CrossRef]
- Portela, L.I. Sediment Delivery from the Guadiana Estuary to the Coastal Ocean. J. Coast. Res. 2006, 39, 1819–1823. [Google Scholar]
- Gonzalez, R.; Dias, J.A.; Ferreira, Ó. Recent rapid evolution of the Guadiana estuary (south western Iberian Peninsula). J. Coast. Res. SI 2001, 34, 516–527. [Google Scholar]
- Nelson, C.H.; Baraza, J.; Maldonado, A.; Rodero, J.; Escutia, C.; Barber, J.H. Influence of the Atlantic inflow and Mediterranean outflow currents on Late Quaternary sedimentary facies of the Gulf of Cadiz continental margin. Mar. Geol. 1999, 155, 99–129. [Google Scholar] [CrossRef]
- García-Lafuente, J.; Delgado, J.; Criado-Aldeanueva, F.; Bruno, M.; del Río, J.; Miguel Vargas, J. Water mass circulation on the continental shelf of the Gulf of Cádiz. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 1182–1197. [Google Scholar] [CrossRef]
- Ruiz, J.; Navarro, G. Upwelling spots and vertical velocities in the Gulf of Cádiz: An approach for their diagnose by combining temperature and ocean colour remote sensing. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 1282–1293. [Google Scholar] [CrossRef]
- De Oliveira Júnior, L.; Garel, E.; Relvas, P. The structure of incipient coastal counter currents in South Portugal as indicator of their forcing agents. J. Mar. Syst. 2021, 214, 103486. [Google Scholar] [CrossRef]
- Prieto, L.; Navarro, G.; Rodríguez-Gálvez, S.; Huertas, I.E.; Naranjo, J.M.; Ruiz, J. Oceanographic and meteorological forcing of the pelagic ecosystem on the Gulf of Cadiz shelf (SW Iberian Peninsula). Cont. Shelf Res. 2009, 29, 2122–2137. [Google Scholar] [CrossRef]
- Criado-Aldeanueva, F.; García-Lafuente, J.; Vargas, J.M.; Del Río, J.; Vázquez, A.; Reul, A.; Sánchez, A. Distribution and circulation of water masses in the Gulf of Cádiz from in situ observations. Deep. Sea Res. II 2006, 53, 1144–1160. [Google Scholar] [CrossRef]
- Garel, E.; Laiz, I.; Drago, T.; Relvas, P. Characterisation of coastal counter-currents on the inner shelf of the Gulf of Cadiz. J. Mar. Syst. 2016, 155, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Bellanco, M.J.; Sánchez-Leal, R.F. Spatial distribution and intra-annual variability of water masses on the Eastern Gulf of Cadiz seabed. Cont. Shelf Res. 2016, 128, 26–35. [Google Scholar] [CrossRef]
- Zazo, C.; Goy, J.L.; Somoza, L.; Dabrio, C.J.; Belluomini, G.; Improta, S.; Lario, J.; Bardaji, T.; Silva, P.G. Holocene sequence of sea-level fluctuations in relation to climatic trends in the Atlantic–Mediterranean linkage coast. J. Coast. Res. 1994, 10, 933–945. [Google Scholar]
- Gutiérrez-Mas, J.M.; Hernández-Molina, F.J.; López Aguayo, F. Holocene sedimentary dynamics on the Iberian continental shelf of the Gulf of Cadiz (SW Spain). Cont. Shelf Res. 1996, 16, 1635–1653. [Google Scholar] [CrossRef]
- Lobo, F.J.; Mendes, I.; García, M.; Reguera, M.I.; Antón, L.; Lebreiro, S.L.; Van Rooij, D.; Luján, M.; Fernández-Puga, M.C.; Dias, J.M.A. A progradational pulse during the initial postglacial shelf drowning in the northern Gulf of Cadiz. In 8° Simposio del Margen Continental Ibérico Atlántico, Abstract Volume; Díaz del Río, V., Bárcenas, P., Fernández-Salas, L.M., López-González, N., Palomino, D., Rueda, J.L., Sánchez-Guillamón, O., Vázquez, J.T., Eds.; Sia Graf: Malaga, Spain, 2015; pp. 619–622. [Google Scholar]
- Burdloff, D.; Araújo, M.F.; Jouanneau, J.-M.; Mendes, I.; Monge Soares, A.M.; Dias, J.M.A. Sources of organic carbon in the Portuguese continental shelf sediments during the Holocene period. Appl. Geochem. 2008, 23, 2857–2870. [Google Scholar] [CrossRef]
- Boski, T.; Moura, D.; Veiga-Pires, C.; Camacho, S.; Duarte, D.; Scott, D.B.; Fernandes, S.G. Postglacial sea-level rise and sedimentary response in the Guadiana Estuary, Portugal/Spain border. Sediment. Geol. 2002, 150, 103–122. [Google Scholar] [CrossRef] [Green Version]
- Goy, J.L.; Zazo, C.; Dabrio, C.J.; Lario, J.; Borja, F.; Sierro, F.J.; Flores, J.A. Global and regional factors controlling changes of coastlines in southern Iberia (Spain) during the Holocene. Quat. Sci. Rev. 1996, 15, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Boski, T.; Camacho, S.; Moura, D.; Fletcher, W.; Wilamowski, A.; Veiga-Pires, C.; Correia, V.; Loureiro, C.; Santana, P. Chronology of the sedimentary processes during the postglacial sea level rise in two estuaries of the Algarve coast, Southern Portugal. Estuar. Coast. Shelf Sci. 2008, 77, 230–244. [Google Scholar] [CrossRef]
- Delgado, J.; Boski, T.; Nieto, J.M.; Pereira, L.; Moura, D.; Gomes, A.; Sousa, C.; García-Tenorio, R. Sea-level rise and anthropogenic activities recorded in the late Pleistocene/Holocene sedimentary infill of the Guadiana Estuary (SW Iberia). Quat. Sci. Rev. 2012, 33, 121–141. [Google Scholar] [CrossRef]
- Fletcher, W.J.; Boski, T.; Moura, D. Palynological evidence for environmental and climatic change in the lower Guadiana valley, Portugal, during the last 13,000 years. Holocene 2007, 17, 481–494. [Google Scholar] [CrossRef]
- Chester, D.K.; James, P.A. Late Pleistocene and Holocene landscape development in the Algarve Region, Southern Portugal. J. Mediterr. Archaeol. 1999, 12, 169–196. [Google Scholar] [CrossRef]
- Boone, J.L.; Worman, F.S. Rural settlement and soil erosion from the late Roman Period through the medieval Islamic Period in the lower Alentejo of Portugal. J. Field Archaeol. 2007, 32, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Mendes, I.; Dias, J.A.; Schönfeld, J.; Ferreira, Ó.; Rosa, F.; Lobo, F.J. Living, dead and fossil benthic foraminifera on a river dominated shelf (northern Gulf of Cadiz) and their use for paleoenvironmental reconstruction. Cont. Shelf Res. 2013, 68, 91–111. [Google Scholar] [CrossRef]
- Mil-Homens, M.; Vale, C.; Naughton, F.; Brito, P.; Drago, T.; Anes, B.; Raimundo, J.; Schmidt, S.; Caetano, M. Footprint of roman and modern mining activities in a sediment core from the southwestern Iberian Atlantic shelf. Sci. Total Environ. 2016, 571, 1211–1221. [Google Scholar] [CrossRef]
- Mil-Homens, M.; Vale, C.; Brito, P.; Naughton, F.; Drago, T.; Raimundo, J.; Anes, B.; Schmidt, S.; Caetano, M. Insights of Pb isotopic signature into the historical evolution and sources of Pb contamination in a sediment core of the southwestern Iberian Atlantic shelf. Sci. Total Environ. 2017, 586, 473–484. [Google Scholar] [CrossRef]
- Hanebuth, T.J.J.; King, M.L.; Mendes, I.; Lebreiro, S.; Lobo, F.J.; Oberle, F.K.J.; Antón, L.; Ferreira, P.A.; Reguera, M.I. Hazard potential of widespread but hidden historic offshore heavy metal (Pb, Zn) contamination (Gulf of Cadiz, Spain). Science of the Total Environ. 2018, 637–638, 561–576. [Google Scholar] [CrossRef] [PubMed]
- Lorimer, G.W.; Cliff, G. Analytical electron microscopy of minerals. In Electron Microscopy in Mineralogy; Wenk, H.-R., Ed.; Springer: Berlin/Heidelberg, Germany, 1976; pp. 506–519. [Google Scholar]
- Buatier, M.; Honnorez, J.; Ehret, G. Fe-smectite-glauconite transition in hydrothermal green clays from the Galapagos spreading center. Clays Clay Miner. 1989, 37, 532–541. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997; p. 378. [Google Scholar]
- Lόpez-Quirόs, A.; Sánchez-Navas, A.; Nieto, F.; Escutia, C. New insights into the nature of glauconite. Am. Mineral. 2020, 105, 674–686. [Google Scholar] [CrossRef]
- Thompson, G.R.; Hower, J. 1975. The mineralogy of glauconite. Clays Clay Miner. 1975, 23, 289–300. [Google Scholar] [CrossRef]
- Giresse, P.; Wiewiora, A.; Lacka, B. Mineral phases and processes within green peloids from two recent deposits near the Congo River Mouth. Clay Miner. 1988, 23, 447–458. [Google Scholar] [CrossRef]
- Ehlmann, A.; Hulings, N.; Glover, E. Stages of glauconite formation in modern foraminiferal sediments. J. Sediment. Petrol. 1963, 33, 87–96. [Google Scholar]
- Lee, C.H.; Choi, S.; Suh, M. High iron glaucony from the continental shelf of the Yellow Sea off the southwestern Korean Peninsula. J. Asian Earth Sci. 2002, 20, 507–515. [Google Scholar] [CrossRef]
- Basa, T.; Greensmith, J.T.; Finzi, C.V. The sub-surface Holocene Middle sands of Dungeness. Proc. Geol. Assoc. 1997, 108, 105–112. [Google Scholar] [CrossRef]
- Seed, D.P. The formation of vermicular pellets in New Zealand glauconites. Am. Mineral. 1965, 50, 1097–1106. [Google Scholar]
- Odin, G.S.; Fullagar, P.D. Geological significance of the glaucony facies. Green Mar. Clays 1988, 45, 295–332. [Google Scholar]
- Lόpez-Quirόs, A.; Escutia, C.; Sánchez-Navas, A.; Nieto, F.; García-Casco, A.; Martín-Algarra, A.; Evangelinos, D.; Salabarnada, A. Glaucony authigenesis, maturity and alteration in the Weddell Sea: An indicator of paleoenvironmental conditions before the onset of Antarctic glaciation. Sci. Rep. 2019, 9, 13580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRae, S.G. Glauconite. Earth Sci. Rev. 1972, 8, 397–440. [Google Scholar] [CrossRef]
- Pilskaln, C.H.; Honjo, S. The fecal pellet fraction of biogeochemical particle fluxes to the deep sea. Glob. Biogeochem. Cycles 1987, 1, 31–48. [Google Scholar] [CrossRef]
- Zanin, Y.N.; Eder, V.G.; Zamirailova, A.G. Bacterial forms in glauconites from Upper Jurassic deposits of the West Siberian Plate. Russ. Geol. Geophys. 2004, 45, 774–777. [Google Scholar]
- Eder, V.G.; Martin-Algarra, A.; Sanchez-Navas, A.; Zanin, Y.N.; Zamiralova, A.G.; Lebedev, Y.N. Depositional controls on glaucony texture and composition, Upper Jurassic, West Siberian Basin. Sedimentology 2007, 54, 1365–1387. [Google Scholar] [CrossRef]
- Giresse, P. Quaternary Glauconitization on Gulf of Guinea, Glauconite Factory: Overview of and New Data on Tropical Atlantic Continental Shelves and Deep Slopes. Minerals 2022, 12, 908. [Google Scholar] [CrossRef]
- Cook, P.J.; Marshall, J.F. Geochemistry of iron and phosphorus-rich nodules from the east Australian continental shelf. Mar. Geol. 1981, 41, 205–221. [Google Scholar] [CrossRef]
- Glenn, C.R.; Arthur, M.A. Anatomy and origin of a Cretaceous phosphorite-greensand giant, Egypt. Sedimentology 1990, 37, 123–154. [Google Scholar] [CrossRef]
- Glenn, C.R.; Föllmi, K.B.; Riggs, S.R.; Baturin, G.N.; Grimm, K.A.; Trappe, J.; Abed, A.M.; Galli-Oliver, C.; Garrison, R.E.; Ilyan, A.; et al. Phosphorus and phosphorites: Sedimentology and environments of formation. Eclogae Geol. Helv. 1994, 87, 747–788. [Google Scholar]
- Parrish, J.T.; Droser, M.L.; Bottjer, D.J. A Triassic upwelling zone: The Shublik Formation, Arctic Alaska, USA. J. Sediment. Res. 2001, 71, 272–285. [Google Scholar] [CrossRef]
- Harder, H. Synthesis of glauconite at surface temperatures. Clays Clay Miner. 1980, 28, 217–222. [Google Scholar] [CrossRef]
- Gaudin, A.; Buatier, M.D.; Beaufort, D.; Petit, S.; Grauby, O.; Decareau, A. Characterization and origin of Fe3+-montmorillonite in deep water calcareous sediments (Pacific Ocean, Costa Rica margin). Clays Clay Miner. 2005, 53, 452–465. [Google Scholar] [CrossRef]
- Jiménez-Millán, J.; Castro, J.M. K-feldspar alteration to gel material and crystallization of glauconitic peloids with berthierine in Cretaceous marine sediments-sedimentary implications (Prebetic Zone, Betic Cordillera, SE Spain). Geol. J. 2008, 43, 19–31. [Google Scholar] [CrossRef]
- Baldermann, A.; Dietzel, M.; Mavromatis, V.; Mittermayr, F.; Warr, L.N.; Wemmer, K. The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and illite-smectite: A case study of Lower Cretaceous shallow-water carbonates. Chem. Geol. 2017, 453, 21–34. [Google Scholar] [CrossRef]
- McCracken, S.R.; Compton, J.; Hicks, K. Sequence-stratigraphic significance of glaucony-rich lithofacies at Site 903. G.S. Mt. Proc. ODP Sci. Results 1996, 150, 171–187. [Google Scholar]
- Myrow, P. Transgressive stratigraphy and depositional framework of Cambrian tidal dune deposits, Peerless Formation, Central Colorado, U.S.A. In Tidalites: Processes and Products; Alexander, C.R., Davis, R.A., Henry, V.J., Eds.; SEPM Special Publications: Broken Arrow, OK, USA, 1998; Volume 61, pp. 143–154. [Google Scholar]
- Hesselbo, S.P.; Huggett, J.M. Glaucony in ocean margin sequence stratigraphy (Oligocene–Pliocene, Offshore New Jersey, USA.; ODP Leg 174A). J. Sediment. Res. 2001, 71, 598–606. [Google Scholar] [CrossRef]
- Amorosi, A.; Guidi, R.; Mas, R.; Falanga, E. Glaucony from the Cretaceous of the Sierra de Guadarrama (Central Spain) and its application in a sequence stratigraphic context. Int. J. Earth Sci. 2011, 1, 415–427. [Google Scholar] [CrossRef]
- Loutit, T.S.; Hardenbol, J.; Vail, P.R.; Baum, G.R. Condensed sections: The key to age determination and correlation of continental margin sequences. In Sea-level Changes: An Integrated Approach; Wilgus, C.K., Hastings, B.S., Kendall, C.G.S.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C., Eds.; SEPM Special Publications: Broken Arrow, OK, USA, 1988; Volume 42, pp. 183–213. [Google Scholar]
- Peters, S.E.; Gaines, R.R. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature 2012, 484, 363–366. [Google Scholar] [CrossRef]
- Wigley, R.A.; Compton, J.S. Late Cenozoic evolution of the outer continental shelf at the head of the Cape Canyon, South Africa. Mar. Geol. 2006, 226, 1–23. [Google Scholar] [CrossRef]
- Soares, A.M.; Martins, J.M. Radiocarbon dating of marine samples from Gulf of Cadiz: The reservoir effect. Quat. Int. 2010, 221, 9–12. [Google Scholar] [CrossRef]
- Vargas, J.M.; García-Lafuente, J.; Delgado, J.; Criado, F. Seasonal and wind-induced variability of Sea Surface Temperature patterns in the Gulf of Cádiz. J. Mar. Syst. 2003, 38, 205–219. [Google Scholar] [CrossRef]
- García-Lafuente, J.; Ruiz, J. The Gulf of Cádiz pelagic ecosystem: A review. Prog. Oceanogr. 2007, 74, 228–251. [Google Scholar] [CrossRef]
- Fabião, C. O passado Proto-Histórico e Romano. A Romanização do actual território português. In História de Portugal, Direcção de José Mattoso; Mattoso, J., Ed.; Círculo de Leitores: Lisbon, Portugal, 1992; p. 567. [Google Scholar]
Sample | K2O | Fe2O3* | Al2O3 | |||
---|---|---|---|---|---|---|
Core 5 (HST) | ||||||
75 (n = 3) | 3.4 | (3.1–3.8) | 19.8 | (13.8–26.9) | 5.3 | (3.4–8) |
99 (n = 9) | 3.5 | (2.9–4) | 22.8 | (18.5–27) | 3.7 | (2.7–4.7) |
111 (n = 10) | 3.7 | (3.2–4.3) | 22.9 | (18.8–32.3) | 3.5 | (2.3–4.3) |
119 (n = 11) | 3.9 | (3.3–4.7) | 26 | (20.6–37.2) | 3.4 | (1.9–4.2) |
131 (n = 12) | 3.7 | (2.6–4.3) | 22 | (17.4–28.2) | 4.1 | (3.2–5.6) |
139 (n = 12) | 3.7 | (3.1–5) | 23.3 | (14.3–29.8) | 3.8 | (2.9–6.2) |
147 (n = 11) | 3.9 | (2.8–5.3) | 24.5 | (16.2–40.9) | 3.7 | (2.6–5.9) |
159 (n = 9) | 2.9 | (1.7–3.9) | 23.6 | (19.1–29.7) | 3.7 | (2.8–4.2) |
171 (n = 11) | 3.3 | (2.7–3.9) | 29.1 | (18.9–45.1) | 3.3 | (2.3–5) |
Surface samples (TST) | ||||||
A854 (n = 6) | 4.5 | (3.5–5.3) | 29.5 | (19.3–41.6) | 3.5 | (2.3–4.7) |
A851 (n = 12) | 4.5 | (2–5.7) | 24 | (17.4–32.7) | 3.9 | (2.3–5.3) |
A850 (n = 12) | 4.8 | (3.2–6.7) | 20 | (12–32.9) | 5.2 | (2.9–8.3) |
Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Si | 3.6 | 3.54 | 3.51 | 3.57 | 3.5 | 3.79 | 3.6 | 3.41 | 3.46 | 3.59 | 3.55 | 3.55 | 3.36 | 3.52 | 3.41 | 3.38 | 3.33 |
IVAl | 0.24 | 0.46 | 0.41 | 0.43 | 0.31 | 0.21 | 0.4 | 0.38 | 0.54 | 0.25 | 0.45 | 0.45 | 0.64 | 0.24 | 0.59 | 0.62 | 0.38 |
Fe | 0.16 | 0.08 | 0.19 | 0.21 | 0.16 | 0.24 | 0.29 | ||||||||||
ΣIV | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Ti | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
VIAl | 0 | 0.02 | 0 | 0.01 | 0 | 0.28 | 0.03 | 0 | 0.09 | 0 | 0.06 | 0.11 | 0.74 | 0 | 1.02 | 1.05 | 0 |
Fe* | 1.66 | 1.65 | 1.7 | 1.65 | 1.68 | 1.9 | 2.32 | 1.63 | 1.59 | 1.68 | 1.6 | 1.57 | 0.94 | 1.63 | 0.69 | 0.92 | 1.75 |
Mg | 0.47 | 0.42 | 0.41 | 0.42 | 0.44 | 0.49 | 0.44 | 0.54 | 0.47 | 0.37 | 0.47 | 0.4 | 0.42 | 0.48 | 0.4 | 0.19 | 0.49 |
ΣVIM | 2.13 | 2.09 | 2.11 | 2.08 | 2.12 | 2.67 | 2.79 | 2.17 | 2.15 | 2.05 | 2.13 | 2.08 | 2.1 | 2.11 | 2.11 | 2.16 | 2.24 |
Ca | 0.05 | 0.06 | 0.06 | 0.04 | 0.05 | 0.05 | 0.13 | 0.11 | 0.11 | 0.05 | 0.05 | 0.04 | 0.06 | 0.05 | 0.05 | 0.03 | 0.04 |
Na | 0.01 | 0.01 | 0.01 | 0 | 0.01 | 0.03 | 0 | 0.01 | 0 | 0.01 | 0.01 | 0.01 | 0.05 | 0.02 | 0.03 | 0.05 | 0 |
K | 0.37 | 0.47 | 0.44 | 0.55 | 0.47 | 0.48 | 0.52 | 0.41 | 0.33 | 0.54 | 0.44 | 0.49 | 0.57 | 0.51 | 0.54 | 0.23 | 0.34 |
ΣXIIA | 0.43 | 0.54 | 0.51 | 0.59 | 0.53 | 0.56 | 0.65 | 0.53 | 0.44 | 0.6 | 0.5 | 0.54 | 0.68 | 0.58 | 0.62 | 0.31 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Quirós, A.; Lobo, F.J.; Mendes, I.; Nieto, F. Holocene Glaucony from the Guadiana Shelf, Northern Gulf of Cadiz (SW Iberia): New Genetic Insights in a Sequence Stratigraphy Context. Minerals 2023, 13, 177. https://doi.org/10.3390/min13020177
López-Quirós A, Lobo FJ, Mendes I, Nieto F. Holocene Glaucony from the Guadiana Shelf, Northern Gulf of Cadiz (SW Iberia): New Genetic Insights in a Sequence Stratigraphy Context. Minerals. 2023; 13(2):177. https://doi.org/10.3390/min13020177
Chicago/Turabian StyleLópez-Quirós, Adrián, Francisco José Lobo, Isabel Mendes, and Fernando Nieto. 2023. "Holocene Glaucony from the Guadiana Shelf, Northern Gulf of Cadiz (SW Iberia): New Genetic Insights in a Sequence Stratigraphy Context" Minerals 13, no. 2: 177. https://doi.org/10.3390/min13020177
APA StyleLópez-Quirós, A., Lobo, F. J., Mendes, I., & Nieto, F. (2023). Holocene Glaucony from the Guadiana Shelf, Northern Gulf of Cadiz (SW Iberia): New Genetic Insights in a Sequence Stratigraphy Context. Minerals, 13(2), 177. https://doi.org/10.3390/min13020177