Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = bearings-only tracking (BOT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4106 KiB  
Article
A Monte Carlo-Based Iterative Extended Kalman Filter for Bearings-Only Tracking of Sea Targets
by Sahab Edrisi, Javad Enayati, Abolfazl Rahimnejad and Stephen Andrew Gadsden
Sensors 2024, 24(7), 2087; https://doi.org/10.3390/s24072087 - 25 Mar 2024
Cited by 2 | Viewed by 1495
Abstract
In this paper, a Monte Carlo (MC)-based extended Kalman filter is proposed for a two-dimensional bearings-only tracking problem (BOT). This problem addresses the processing of noise-corrupted bearing measurements from a sea acoustic source and estimates state vectors including position and velocity. Due to [...] Read more.
In this paper, a Monte Carlo (MC)-based extended Kalman filter is proposed for a two-dimensional bearings-only tracking problem (BOT). This problem addresses the processing of noise-corrupted bearing measurements from a sea acoustic source and estimates state vectors including position and velocity. Due to the nonlinearity and complex observability properties in the BOT problem, a wide area of research has been focused on improving its state estimation accuracy. The objective of this research is to present an accurate approach to estimate the relative position and velocity of the source with respect to the maneuvering observer. This approach is implemented using the iterated extended Kalman filter (IEKF) in an MC-based iterative structure (MC-IEKF). Re-linearizing dynamic and measurement equations using the IEKF along with the MC campaign applied to the initial conditions result in significantly improved accuracy in the estimation process. Furthermore, an observability analysis is conducted to show the effectiveness of the designed maneuver of the observer. A comparison with the widely used UKF algorithm is carried out to demonstrate the performance of the proposed method. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

18 pages, 31421 KiB  
Communication
Robust Cubature Kalman Filter for Moving-Target Tracking with Missing Measurements
by Samer Sahl, Enbin Song and Dunbiao Niu
Sensors 2024, 24(2), 392; https://doi.org/10.3390/s24020392 - 9 Jan 2024
Cited by 8 | Viewed by 2478
Abstract
Handling the challenge of missing measurements in nonlinear systems is a difficult problem in various scientific and engineering fields. Missing measurements, which can arise from technical faults during observation, diffusion channel shrinking, or the loss of specific metrics, can bring many challenges when [...] Read more.
Handling the challenge of missing measurements in nonlinear systems is a difficult problem in various scientific and engineering fields. Missing measurements, which can arise from technical faults during observation, diffusion channel shrinking, or the loss of specific metrics, can bring many challenges when estimating the state of nonlinear systems. To tackle this issue, this paper proposes a technique that utilizes a robust cubature Kalman filter (RCKF) by integrating Huber’s M-estimation theory with the standard conventional cubature Kalman filter (CKF). Although a CKF is often used for solving nonlinear filtering problems, its effectiveness might be limited due to a lack of knowledge regarding the nonlinear model of the state and noise-related statistical information. In contrast, the RCKF demonstrates an ability to mitigate performance degradation and discretization issues related to track curves by leveraging covariance matrix predictions for state estimation and output control amidst dynamic disruption errors—even when noise statistics deviate from prior assumptions. The performance of extended Kalman filters (EKFs), unscented Kalman filters (UKFs), CKFs, and RCKFs was compared and evaluated using two numerical examples involving the Univariate Non-stationary Growth Model (UNGM) and bearing-only tracking (BOT). The numerical experiments demonstrated that the RCKF outperformed the EKF, EnKF, and CKF in effectively handling anomaly errors. Specifically, in the UNGM example, the RCKF achieved a significantly lower ARMSE (4.83) and ANCI (3.27)—similar outcomes were observed in the BOT example. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

13 pages, 4711 KiB  
Article
Underwater Bearing Only Tracking Using Optimal Observer Maneuver Strategies
by Asra Nusrat, Yaan Li, Chunyan Cheng, Hafeezullah Qazi and Lingji Xu
J. Mar. Sci. Eng. 2022, 10(5), 576; https://doi.org/10.3390/jmse10050576 - 24 Apr 2022
Cited by 5 | Viewed by 2814
Abstract
This paper considers the problem of tracking a uniform moving source using noisy bearing measurements obtained from a distant observer. Observer trajectory optimization plays a central role in this problem, with the objective to minimize the estimation error of the target state. The [...] Read more.
This paper considers the problem of tracking a uniform moving source using noisy bearing measurements obtained from a distant observer. Observer trajectory optimization plays a central role in this problem, with the objective to minimize the estimation error of the target state. The Bearing Only Tracking (BOT) of passive targets is mainly focused on the observer maneuver with known trajectories and rarely focused on the future prediction of observer states using adaptive optimization strategies. In this paper, observer paths using one-step ahead optimization based on a performance index are devised which are potentially useful for longer horizon observer trajectory planning in passive tracking. This performance index is the function of source parameters termed as the determinant of Error Covariance Matrix (ECM) which is numerically more efficient than the determinant of Fisher Information Matrix (FIM). The determinant of the FIM requires the calculation of future values for target states and measurements rather than the current values, which is not feasible for Kalman like filters. Therefore, in this paper, the optimization technique is implemented using the state error covariance which is readily available through Kalman filter equations and does require separate numerical calculations. Due to optimal observer maneuver, the performance of the proposed algorithm does not depend on the initial conditions as compared to the conventional tracking methods. The efficiency of the evolutionary algorithm is calculated in terms of range, position and velocity errors and simulation results show 4% fewer estimation errors for ECM based optimization than the determinant of the FIM method. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 1011 KiB  
Article
Application of Spherical-Radial Cubature Bayesian Filtering and Smoothing in Bearings Only Passive Target Tracking
by Wasiq Ali, Yaan Li, Zhe Chen, Muhammad Asif Zahoor Raja, Nauman Ahmed and Xiao Chen
Entropy 2019, 21(11), 1088; https://doi.org/10.3390/e21111088 - 7 Nov 2019
Cited by 12 | Viewed by 3388
Abstract
In this paper, an application of spherical radial cubature Bayesian filtering and smoothing algorithms is presented to solve a typical underwater bearings only passive target tracking problem effectively. Generally, passive target tracking problems in the ocean environment are represented with the state-space model [...] Read more.
In this paper, an application of spherical radial cubature Bayesian filtering and smoothing algorithms is presented to solve a typical underwater bearings only passive target tracking problem effectively. Generally, passive target tracking problems in the ocean environment are represented with the state-space model having linear system dynamics merged with nonlinear passive measurements, and the system is analyzed with nonlinear filtering algorithms. In the present scheme, an application of spherical radial cubature Bayesian filtering and smoothing is efficiently investigated for accurate state estimation of a far-field moving target in complex ocean environments. The nonlinear model of a Kalman filter based on a Spherical Radial Cubature Kalman Filter (SRCKF) and discrete-time Kalman smoother known as a Spherical Radial Cubature Rauch–Tung–Striebel (SRCRTS) smoother are applied for tracking the semi-curved and curved trajectory of a moving object. The worth of spherical radial cubature Bayesian filtering and smoothing algorithms is validated by comparing with a conventional Unscented Kalman Filter (UKF) and an Unscented Rauch–Tung–Striebel (URTS) smoother. Performance analysis of these techniques is performed for white Gaussian measured noise variations, which is a significant factor in passive target tracking, while the Bearings Only Tracking (BOT) technology is used for modeling of a passive target tracking framework. Simulations based experiments are executed for obtaining least Root Mean Square Error (RMSE) among a true and estimated position of a moving target at every time instant in Cartesian coordinates. Numerical results endorsed the validation of SRCKF and SRCRTS smoothers with better convergence and accuracy rates than that of UKF and URTS for each scenario of passive target tracking problem. Full article
(This article belongs to the Special Issue Entropy and Information Theory in Acoustics)
Show Figures

Figure 1

19 pages, 3593 KiB  
Article
Adaptive Fifth-Degree Cubature Information Filter for Multi-Sensor Bearings-Only Tracking
by Haonan Jiang and Yuanli Cai
Sensors 2018, 18(10), 3241; https://doi.org/10.3390/s18103241 - 26 Sep 2018
Cited by 15 | Viewed by 3229
Abstract
Standard Bayesian filtering algorithms only work well when the statistical properties of system noises are exactly known. However, this assumption is not always plausible in real target tracking applications. In this paper, we present a new estimation approach named adaptive fifth-degree cubature information [...] Read more.
Standard Bayesian filtering algorithms only work well when the statistical properties of system noises are exactly known. However, this assumption is not always plausible in real target tracking applications. In this paper, we present a new estimation approach named adaptive fifth-degree cubature information filter (AFCIF) for multi-sensor bearings-only tracking (BOT) under the condition that the process noise follows zero-mean Gaussian distribution with unknown covariance. The novel algorithm is based on the fifth-degree cubature Kalman filter and it is constructed within the information filtering framework. With a sensor selection strategy developed using observability theory and a recursive process noise covariance estimation procedure derived using the covariance matching principle, the proposed filtering algorithm demonstrates better estimation accuracy and filtering stability. Simulation results validate the superiority of the AFCIF. Full article
(This article belongs to the Special Issue Sensor Fusion and Novel Technologies in Positioning and Navigation)
Show Figures

Figure 1

Back to TopTop