Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = azaspiracid poisoning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3213 KiB  
Article
Seasonal Single-Site Sampling Reveals Large Diversity of Marine Algal Toxins in Coastal Waters and Shellfish of New Caledonia (Southwestern Pacific)
by Manoëlla Sibat, Tepoerau Mai, Simon Tanniou, Isabelle Biegala, Philipp Hess and Thierry Jauffrais
Toxins 2023, 15(11), 642; https://doi.org/10.3390/toxins15110642 - 3 Nov 2023
Cited by 5 | Viewed by 2158
Abstract
Algal toxins pose a serious threat to human and coastal ecosystem health, even if their potential impacts are poorly documented in New Caledonia (NC). In this survey, bivalves and seawater (concentrated through passive samplers) from bays surrounding Noumea, NC, collected during the warm [...] Read more.
Algal toxins pose a serious threat to human and coastal ecosystem health, even if their potential impacts are poorly documented in New Caledonia (NC). In this survey, bivalves and seawater (concentrated through passive samplers) from bays surrounding Noumea, NC, collected during the warm and cold seasons were analyzed for algal toxins using a multi-toxin screening approach. Several groups of marine microalgal toxins were detected for the first time in NC. Okadaic acid (OA), azaspiracid-2 (AZA2), pectenotoxin-2 (PTX2), pinnatoxin-G (PnTX-G), and homo-yessotoxin (homo-YTX) were detected in seawater at higher levels during the summer. A more diversified toxin profile was found in shellfish with brevetoxin-3 (BTX3), gymnodimine-A (GYM-A), and 13-desmethyl spirolide-C (SPX1), being confirmed in addition to the five toxin groups also found in seawater. Diarrhetic and neurotoxic toxins did not exceed regulatory limits, but PnTX-G was present at up to the limit of the threshold recommended by the French Food Safety Authority (ANSES, 23 μg kg−1). In the present study, internationally regulated toxins of the AZA-, BTX-, and OA-groups by the Codex Alimentarius were detected in addition to five emerging toxin groups, indicating that algal toxins pose a potential risk for the consumers in NC or shellfish export. Full article
Show Figures

Figure 1

18 pages, 1058 KiB  
Article
SoundToxins: A Research and Monitoring Partnership for Harmful Phytoplankton in Washington State
by Vera L. Trainer and Teri L. King
Toxins 2023, 15(3), 189; https://doi.org/10.3390/toxins15030189 - 2 Mar 2023
Cited by 10 | Viewed by 3210
Abstract
The more frequent occurrence of marine harmful algal blooms (HABs) and recent problems with newly-described toxins in Puget Sound have increased the risk for illness and have negatively impacted sustainable access to shellfish in Washington State. Marine toxins that affect safe shellfish harvest [...] Read more.
The more frequent occurrence of marine harmful algal blooms (HABs) and recent problems with newly-described toxins in Puget Sound have increased the risk for illness and have negatively impacted sustainable access to shellfish in Washington State. Marine toxins that affect safe shellfish harvest because of their impact on human health are the saxitoxins that cause paralytic shellfish poisoning (PSP), domoic acid that causes amnesic shellfish poisoning (ASP), diarrhetic shellfish toxins that cause diarrhetic shellfish poisoning (DSP) and the recent measurement of azaspiracids, known to cause azaspiracid poisoning (AZP), at low concentrations in Puget Sound shellfish. The flagellate, Heterosigma akashiwo, impacts the health and harvestability of aquacultured and wild salmon in Puget Sound. The more recently described flagellates that cause the illness or death of cultivated and wild shellfish, include Protoceratium reticulatum, known to produce yessotoxins, Akashiwo sanguinea and Phaeocystis globosa. This increased incidence of HABs, especially dinoflagellate HABs that are expected in increase with enhanced stratification linked to climate change, has necessitated the partnership of state regulatory programs with SoundToxins, the research, monitoring and early warning program for HABs in Puget Sound, that allows shellfish growers, Native tribes, environmental learning centers and citizens, to be the “eyes on the coast”. This partnership enables safe harvest of wholesome seafood for consumption in the region and helps to describe unusual events that impact the health of oceans, wildlife and humans. Full article
Show Figures

Figure 1

26 pages, 2731 KiB  
Article
Marine Biotoxins in Whole and Processed Scallops from the Argentine Sea
by Alejandra B. Goya, Danial Baqer, Ryan P. Alexander, Patrycja Stubbs, Karl Dean, Adam M. Lewis, Lewis Coates, Benjamin H. Maskrey and Andrew D. Turner
Mar. Drugs 2022, 20(10), 634; https://doi.org/10.3390/md20100634 - 10 Oct 2022
Cited by 7 | Viewed by 2941
Abstract
Harmful algal blooms are an increasing worldwide threat to the seafood industry and human health as a consequence of the natural production of biotoxins that can accumulate in shellfish. In the Argentine Sea, this has been identified as an issue for the offshore [...] Read more.
Harmful algal blooms are an increasing worldwide threat to the seafood industry and human health as a consequence of the natural production of biotoxins that can accumulate in shellfish. In the Argentine Sea, this has been identified as an issue for the offshore fisheries of Patagonian scallops (Zygochlamys patagonica), leading to potentially harmful effects on consumers. Here we assess spatial and temporal patterns in marine biotoxin concentrations in Patagonian scallops harvested in Argentinian waters between 2012–2017, based on analyses for paralytic shellfish toxins, lipophilic toxins, and amnesic shellfish toxins. There was no evidence for concentrations of lipophilic or amnesic toxins above regulatory acceptance thresholds, with trace concentrations of pectenotoxin 2, azaspiracid 2 and okadaic acid group toxins confirmed. Conversely, paralytic shellfish toxins were quantified in some scallops. Gonyautoxins 1 and 2 dominated the unusual toxin profiles (91%) in terms of saxitoxin equivalents with maximum concentrations reaching 3985 µg STX eq/kg and with changes in profiles linked in part to seasonal changes. Total toxin concentrations were compared between samples of the adductor muscle and whole tissue, with results showing the absence of toxins in the adductor muscle confirming toxin accumulation in the digestive tracts of the scallops and the absence of a human health threat following the processing of scallop adductor meat. These findings highlight that paralytic shellfish toxins with an unusual toxin profile can occur in relatively high concentrations in whole Patagonian scallops in specific regions and during particular time periods, also showing that the processing of scallops on board factory ships to obtain frozen adductor muscle is an effective management process that minimizes the risk of poisonings from final products destined for human consumption. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Figure 1

19 pages, 1838 KiB  
Review
Toxic Effects and Tumor Promotion Activity of Marine Phytoplankton Toxins: A Review
by Biswajita Pradhan, Hansol Kim, Sofia Abassi and Jang-Seu Ki
Toxins 2022, 14(6), 397; https://doi.org/10.3390/toxins14060397 - 8 Jun 2022
Cited by 26 | Viewed by 5452
Abstract
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences [...] Read more.
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences have resulted in several health threats, including cancer, skin disorders, and other diseases, which have been frequently documented. Seafood poisoning disorders triggered by phytoplankton toxins include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP), and azaspiracid shellfish poisoning (AZP). Accordingly, identifying harmful shellfish poisoning and toxin-producing species and their detrimental effects is urgently required. Although the harmful effects of these toxins are well documented, their possible modes of action are insufficiently understood in terms of clinical symptoms. In this review, we summarize the current state of knowledge regarding phytoplankton toxins and their detrimental consequences, including tumor-promoting activity. The structure, source, and clinical symptoms caused by these toxins, as well as their molecular mechanisms of action on voltage-gated ion channels, are briefly discussed. Moreover, the possible stress-associated reactive oxygen species (ROS)-related modes of action are summarized. Finally, we describe the toxic effects of phytoplankton toxins and discuss future research in the field of stress-associated ROS-related toxicity. Moreover, these toxins can also be used in different pharmacological prospects and can be established as a potent pharmacophore in the near future. Full article
Show Figures

Figure 1

14 pages, 2880 KiB  
Article
Azaspiracids Increase Mitochondrial Dehydrogenases Activity in Hepatocytes: Involvement of Potassium and Chloride Ions
by Marco Pelin, Jane Kilcoyne, Chiara Florio, Philipp Hess, Aurelia Tubaro and Silvio Sosa
Mar. Drugs 2019, 17(5), 276; https://doi.org/10.3390/md17050276 - 8 May 2019
Cited by 14 | Viewed by 4553
Abstract
Background: Azaspiracids (AZAs) are marine toxins that are produced by Azadinium and Amphidoma dinoflagellates that can contaminate edible shellfish inducing a foodborne poisoning in humans, which is characterized by gastrointestinal symptoms. Among these, AZA1, -2, and -3 are regulated in the European Union, [...] Read more.
Background: Azaspiracids (AZAs) are marine toxins that are produced by Azadinium and Amphidoma dinoflagellates that can contaminate edible shellfish inducing a foodborne poisoning in humans, which is characterized by gastrointestinal symptoms. Among these, AZA1, -2, and -3 are regulated in the European Union, being the most important in terms of occurrence and toxicity. In vivo studies in mice showed that, in addition to gastrointestinal effects, AZA1 induces liver alterations that are visible as a swollen organ, with the presence of hepatocellular fat droplets and vacuoles. Hence, an in vitro study was carried out to investigate the effects of AZA1, -2, and -3 on liver cells, using human non-tumor IHH hepatocytes. Results: The exposure of IHH cells to AZA1, -2, or -3 (5 × 10−12–1 × 10−7 M) for 24 h did not affect the cell viability and proliferation (Sulforhodamine B assay and 3H-Thymidine incorporation assay), but they induced a significant concentration-dependent increase of mitochondrial dehydrogenases activity (MTT reduction assay). This effect depends on the activity of mitochondrial electron transport chain complex I and II, being counteracted by rotenone and tenoyl trifluoroacetone, respectively. Furthermore, AZAs-increased mitochondrial dehydrogenase activity was almost totally suppressed in the K+-, Cl-, and Na+-free media and sensitive to the specific inhibitors of KATP and hERG potassium channels, Na+/K+, ATPase, and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels. Conclusions: These results suggest that AZA mitochondrial effects in hepatocytes derive from an imbalance of intracellular levels of K+ and, in particular, Cl ions, as demonstrated by the selective reduction of toxin effects by CFTR chloride channel inhibition. Full article
Show Figures

Figure 1

50 pages, 6194 KiB  
Review
The Incidence of Marine Toxins and the Associated Seafood Poisoning Episodes in the African Countries of the Indian Ocean and the Red Sea
by Isidro José Tamele, Marisa Silva and Vitor Vasconcelos
Toxins 2019, 11(1), 58; https://doi.org/10.3390/toxins11010058 - 21 Jan 2019
Cited by 37 | Viewed by 11734
Abstract
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish [...] Read more.
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish toxins (DSTs), cyclic imines (CIs), ciguatoxins (CTXs), azaspiracids (AZTs), palytoxin (PlTXs), tetrodotoxins (TTXs) and their analogs, some of them leading to fatal outcomes. MTs have been reported in several marine organisms causing human poisoning incidents since these organisms constitute the food basis of coastal human populations. In African countries of the Indian Ocean and the Red Sea, to date, only South Africa has a specific monitoring program for MTs and some other countries count only with respect to centers of seafood poisoning control. Therefore, the aim of this review is to evaluate the occurrence of MTs and associated poisoning episodes as a contribution to public health and monitoring programs as an MT risk assessment tool for this geographic region. Full article
(This article belongs to the Special Issue Toxins:10th Anniversary)
Show Figures

Figure 1

13 pages, 901 KiB  
Article
Combined Effects of Lipophilic Phycotoxins (Okadaic Acid, Azapsiracid-1 and Yessotoxin) on Human Intestinal Cells Models
by Pierre-Jean Ferron, Kevin Dumazeau, Jean-François Beaulieu, Ludovic Le Hégarat and Valérie Fessard
Toxins 2016, 8(2), 50; https://doi.org/10.3390/toxins8020050 - 19 Feb 2016
Cited by 25 | Viewed by 6080
Abstract
Phycotoxins are monitored in seafood because they can cause food poisonings in humans. Phycotoxins do not only occur singly but also as mixtures in shellfish. The aim of this study was to evaluate the in vitro toxic interactions of binary combinations of three [...] Read more.
Phycotoxins are monitored in seafood because they can cause food poisonings in humans. Phycotoxins do not only occur singly but also as mixtures in shellfish. The aim of this study was to evaluate the in vitro toxic interactions of binary combinations of three lipophilic phycotoxins commonly found in Europe (okadaic acid (OA), yessotoxin (YTX) and azaspiracid-1 (AZA-1)) using the neutral red uptake assay on two human intestinal cell models, Caco-2 and the human intestinal epithelial crypt-like cells (HIEC). Based on the cytotoxicity of individual toxins, we studied the interactions between toxins in binary mixtures using the combination index-isobologram equation, a method widely used in pharmacology to study drug interactions. This method quantitatively classifies interactions between toxins in mixtures as synergistic, additive or antagonistic. AZA-1/OA, and YTX/OA mixtures showed increasing antagonism with increasing toxin concentrations. In contrast, the AZA-1/YTX mixture showed increasing synergism with increasing concentrations, especially for mixtures with high YTX concentrations. These results highlight the hazard potency of AZA-1/YTX mixtures with regard to seafood intoxication. Full article
(This article belongs to the Collection Marine and Freshwater Toxins)
Show Figures

Figure 1

21 pages, 1494 KiB  
Article
Diarrhetic Shellfish Toxins and Other Lipophilic Toxins of Human Health Concern in Washington State
by Vera L. Trainer, Leslie Moore, Brian D. Bill, Nicolaus G. Adams, Neil Harrington, Jerry Borchert, Denis A. M. Da Silva and Bich-Thuy L. Eberhart
Mar. Drugs 2013, 11(6), 1815-1835; https://doi.org/10.3390/md11061815 - 28 May 2013
Cited by 138 | Viewed by 12947
Abstract
The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health. Following these cases of [...] Read more.
The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health. Following these cases of diarrhetic shellfish poisoning, monitoring for DSTs in Washington State became formalized in 2012, guided by routine monitoring of Dinophysis species by the SoundToxins program in Puget Sound and the Olympic Region Harmful Algal Bloom (ORHAB) partnership on the outer Washington State coast. Here we show that the DSTs at concentrations above the guidance level of 16 μg okadaic acid (OA) + dinophysistoxins (DTXs)/100 g shellfish tissue were widespread in sentinel mussels throughout Puget Sound in summer 2012 and included harvest closures of California mussel, varnish clam, manila clam and Pacific oyster. Concentrations of toxins in Pacific oyster and manila clam were often at least half those measured in blue mussels at the same site. The primary toxin isomer in shellfish and plankton samples was dinophysistoxin-1 (DTX-1) with D. acuminata as the primary Dinophysis species. Other lipophilic toxins in shellfish were pectenotoxin-2 (PTX-2) and yessotoxin (YTX) with azaspiracid-2 (AZA-2) also measured in phytoplankton samples. Okadaic acid, azaspiracid-1 (AZA-1) and azaspiracid-3 (AZA-3) were all below the levels of detection by liquid chromatography tandem mass spectrometry (LC-MS/MS). A shellfish closure at Ruby Beach, Washington, was the first ever noted on the Washington State Pacific coast due to DSTs. The greater than average Fraser River flow during the summers of 2011 and 2012 may have provided an environment conducive to dinoflagellates and played a role in the prevalence of toxigenic Dinophysis in Puget Sound. Full article
(This article belongs to the Special Issue Okadaic Acid and Dinophysis Toxins)
Show Figures

Figure 1

23 pages, 380 KiB  
Article
Production and Isolation of Azaspiracid-1 and -2 from Azadinium spinosum Culture in Pilot Scale Photobioreactors
by Thierry Jauffrais, Jane Kilcoyne, Véronique Séchet, Christine Herrenknecht, Philippe Truquet, Fabienne Hervé, Jean Baptiste Bérard, Cíara Nulty, Sarah Taylor, Urban Tillmann, Christopher O. Miles and Philipp Hess
Mar. Drugs 2012, 10(6), 1360-1382; https://doi.org/10.3390/md10061360 - 13 Jun 2012
Cited by 30 | Viewed by 11239
Abstract
Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to [...] Read more.
Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE) procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell·mL−1 at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day−1, with optimum toxin production at 0.25 day−1. After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures. Full article
Show Figures

Figure 1

27 pages, 675 KiB  
Review
Marine Toxins: Chemistry, Toxicity, Occurrence and Detection, with Special Reference to the Dutch Situation
by Arjen Gerssen, Irene E. Pol-Hofstad, Marnix Poelman, Patrick P.J. Mulder, Hester J. Van den Top and Jacob De Boer
Toxins 2010, 2(4), 878-904; https://doi.org/10.3390/toxins2040878 - 23 Apr 2010
Cited by 152 | Viewed by 21725
Abstract
Various species of algae can produce marine toxins under certain circumstances. These toxins can then accumulate in shellfish such as mussels, oysters and scallops. When these contaminated shellfish species are consumed severe intoxication can occur. The different types of syndromes that can occur [...] Read more.
Various species of algae can produce marine toxins under certain circumstances. These toxins can then accumulate in shellfish such as mussels, oysters and scallops. When these contaminated shellfish species are consumed severe intoxication can occur. The different types of syndromes that can occur after consumption of contaminated shellfish, the corresponding toxins and relevant legislation are discussed in this review. Amnesic Shellfish Poisoning (ASP), Paralytic Shellfish Poisoning (PSP), Diarrheic Shellfish Poisoning (DSP) and Azaspiracid Shellfish Poisoning (AZP) occur worldwide, Neurologic Shellfish Poisoning (NSP) is mainly limited to the USA and New Zealand while the toxins causing DSP and AZP occur most frequently in Europe. The latter two toxin groups are fat-soluble and can therefore also be classified as lipophilic marine toxins. A detailed overview of the official analytical methods used in the EU (mouse or rat bioassay) and the recently developed alternative methods for the lipophilic marine toxins is given. These alternative methods are based on functional assays, biochemical assays and chemical methods. From the literature it is clear that chemical methods offer the best potential to replace the animal tests that are still legislated worldwide. Finally, an overview is given of the situation of marine toxins in The Netherlands. The rat bioassay has been used for monitoring DSP and AZP toxins in The Netherlands since the 1970s. Nowadays, a combination of a chemical method and the rat bioassay is often used. In The Netherlands toxic events are mainly caused by DSP toxins, which have been found in Dutch shellfish for the first time in 1961, and have reoccurred at irregular intervals and in varying concentrations. From this review it is clear that considerable effort is being undertaken by various research groups to phase out the animal tests that are still used for the official routine monitoring programs. Full article
(This article belongs to the Special Issue Toxins from Aquatic Organisms)
Show Figures

Figure 1

8 pages, 55 KiB  
Article
Detection of Diarrheic Shellfish Poisoning and Azaspiracids Toxins in Moroccan Mussels: Comparison of LC-MS Method with the Commercial Immunoassay Kit
by Adra Elgarch, Paulo Vale, Saida Rifai and Aziz Fassouane
Mar. Drugs 2008, 6(4), 587-594; https://doi.org/10.3390/md6040587 - 27 Oct 2008
Cited by 44 | Viewed by 11299
Abstract
Diarrheic shellfish poisoning (DSP) is one of recurrent gastrointestinal illnesses in Morocco, resulting from consumption of contaminated shellfish. In order to develop a rapid and reliable technique for toxins detection, we have compared the results obtained by a commercial immunoassay-“DSP-Check” kit” with those [...] Read more.
Diarrheic shellfish poisoning (DSP) is one of recurrent gastrointestinal illnesses in Morocco, resulting from consumption of contaminated shellfish. In order to develop a rapid and reliable technique for toxins detection, we have compared the results obtained by a commercial immunoassay-“DSP-Check” kit” with those obtained by LC-MS. Both techniques are capable of detecting the toxins in the whole flesh extract which was subjected to prior alkaline hydrolysis in order to detect simultaneously the esterified and non esterified toxin forms. The LC-MS method was found to be able to detect a high level of okadaic acid (OA), low level of dinophysistoxin-2 (DTX2), and surprisingly traces of azaspiracids 2 (AZA2) in mussels. This is the first report of a survey carried out for azaspiracids (AZP) contamination of shellfish harvested in the coastal areas of Morocco. The “DSP-Check” kit was found to detect quantitatively DSP toxins in all contaminated samples containing only OA provided that the parent toxins were within the range of detection and was not in an ester form. A good correlation was observed between the two methods when appropriate dilutions were performed. The immunoassay kit appeared to be more sensitive, specific and faster than LC-MS for determination of DSP in total shellfish extract. Full article
Show Figures

23 pages, 521 KiB  
Review
Neurotoxins from Marine Dinoflagellates: A Brief Review
by Da-Zhi Wang
Mar. Drugs 2008, 6(2), 349-371; https://doi.org/10.3390/md6020349 - 11 Jun 2008
Cited by 341 | Viewed by 35693
Abstract
Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them [...] Read more.
Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them are effective at far lower dosages than conventional chemical agents. Consumption of seafood contaminated by algal toxins results in various seafood poisoning syndromes: paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP) and azaspiracid shellfish poisoning (ASP). Most of these poisonings are caused by neurotoxins which present themselves with highly specific effects on the nervous system of animals, including humans, by interfering with nerve impulse transmission. Neurotoxins are a varied group of compounds, both chemically and pharmacologically. They vary in both chemical structure and mechanism of action, and produce very distinct biological effects, which provides a potential application of these toxins in pharmacology and toxicology. This review summarizes the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by marine dinoflagellates, as well as their molecular mechanisms of action on voltage-gated ion channels. Full article
(This article belongs to the Special Issue Marine Toxins)
Show Figures

34 pages, 566 KiB  
Review
Azaspiracid Shellfish Poisoning: A Review on the Chemistry, Ecology, and Toxicology with an Emphasis on Human Health Impacts
by Michael J. Twiner, Nils Rehmann, Philipp Hess and Gregory J. Doucette
Mar. Drugs 2008, 6(2), 39-72; https://doi.org/10.3390/md6020039 - 7 May 2008
Cited by 200 | Viewed by 23644
Abstract
Azaspiracids (AZA) are polyether marine toxins that accumulate in various shellfish species and have been associated with severe gastrointestinal human intoxications since 1995. This toxin class has since been reported from several countries, including Morocco and much of western Europe. A regulatory limit [...] Read more.
Azaspiracids (AZA) are polyether marine toxins that accumulate in various shellfish species and have been associated with severe gastrointestinal human intoxications since 1995. This toxin class has since been reported from several countries, including Morocco and much of western Europe. A regulatory limit of 160 μg AZA/kg whole shellfish flesh was established by the EU in order to protect human health; however, in some cases, AZA concentrations far exceed the action level. Herein we discuss recent advances on the chemistry of various AZA analogs, review the ecology of AZAs, including the putative progenitor algal species, collectively interpret the in vitro and in vivo data on the toxicology of AZAs relating to human health issues, and outline the European legislature associated with AZAs. Full article
(This article belongs to the Special Issue Marine Toxins)
Show Figures

12 pages, 145 KiB  
Article
Report on the First Detection of Pectenotoxin-2, Spirolide-A and Their Derivatives in French Shellfish
by Zouher Amzil, Manoella Sibat, Florence Royer, Nadine Masson and Eric Abadie
Mar. Drugs 2007, 5(4), 168-179; https://doi.org/10.3390/md504168 - 23 Nov 2007
Cited by 81 | Viewed by 11560
Abstract
In the context of the French Phytoplankton and Phycotoxins MonitoringNetwork (REPHY) programme, shellfish samples were harvested from different locationswhere harmful algae blooms were known to have occurred. For all shellfish samples foundpositive by the mouse bioassay for diarrhetic shellfish poisoning (DSP) toxins, liquidchromatography [...] Read more.
In the context of the French Phytoplankton and Phycotoxins MonitoringNetwork (REPHY) programme, shellfish samples were harvested from different locationswhere harmful algae blooms were known to have occurred. For all shellfish samples foundpositive by the mouse bioassay for diarrhetic shellfish poisoning (DSP) toxins, liquidchromatography (LC) coupled with mass spectrometry (MS) was used to search for thefollowing lipophilic toxins: okadaic acid (OA), dinophysistoxins (DTXs), pectenotoxins(PTXs), azaspiracids (AZAs), yessotoxins (YTXs), spirolides (SPXs) and gymnodimines(GYMs). In order to investigate the presence of acyl-OAs and/or acyl-DTX-1,-2 (DTX-3),alkaline hydrolysis was performed on all samples, and LC/MS analyses were carried out onthe samples before and after hydrolysis. The results revealed different lipophilic toxinprofiles as a function of the shellfish sampling location. The primary finding was that all ofthe samples contained OA and acyl-OA. In addition, other lipophilic toxins were found inshellfish samples: DTX-2, acyl-DTX-2 and SPXs (SPX-A, SPX-desMeC) on the Atlanticcoast (Southern Brittany, Arcachon), and pectenotoxins (PTX-2, PTX-2-seco-acid and 7-epi-PTX-2-seco-acid) on the Mediterranean coast (Thau lagoon, the island of Corsica).This paper reports on the first detection of PTX-2, SPX-A and their derivatives in Frenchshellfish. Full article
(This article belongs to the Special Issue Marine Toxins)
Show Figures

Figure 1

Back to TopTop