Azaspiracids Increase Mitochondrial Dehydrogenases Activity in Hepatocytes: Involvement of Potassium and Chloride Ions
Abstract
:1. Introduction
2. Results
2.1. Cytotoxicity of Azaspiracids towards IHH Cells
2.2. Azaspiracids-Increased Mitochondrial Dehydrogenases Activity Depends on Mitochondrial Electron Transport Chain Complex I and II Function
2.3. Azaspiracids-Increased Mitochondrial Dehydrogenases Activity Depends on H+ Gradient across the Mitochondrial Inner Membrane
2.4. Azaspiracids Mitochondrial Effects Depend on Ionic Imbalance
2.5. Role of K+ Transporters in Azaspiracids Effects
2.6. Role of Cl− Transporters in Azaspiracids Effects
3. Discussion
4. Materials and Methods
4.1. Toxins
4.2. Cell Culture
4.3. MTT Reduction Assay
4.4. Sulforhodamine B Incorporation Assay
4.5. [Methyl-3H] Thymidine Incorporation Assay
4.6. Effect of AZAs on IHH Cells in Selected Ions-Free Culture Media
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hess, P.; Twiner, M.J.; Kilcoyne, J.; Sosa, S. Azaspiracid toxins: toxicological profile. In Marine and Freshwater Toxins, 1st ed.; Gopalakrishnakone, P., Haddad, V., Jr., Kem, W.R., Tubaro, A., Kim, E., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 1–19. [Google Scholar]
- McMahon, T.; Silke, J. West coast of Ireland; winter toxicity of unknown aetiology in mussels. Harmful Algae News 1996, 14, 2. [Google Scholar]
- Satake, M.; Ofuji, K.; Naoki, H.; Jame, K.J.; Furey, A.; McMahon, T.; Silke, J.; Yasumoto, T. Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish mussels, Mytilus edulis. J. Am. Chem. Soc. 1998, 120, 9967–9968. [Google Scholar] [CrossRef]
- Ofuji, K.; Satake, M.; McMahon, T.; Silke, J.; James, K.J.; Naoki, H.; Oshima, Y.; Yasumoto, T. Two analogs of azaspiracid isolated from mussels, Mytilus edulis, involved in human intoxication in Ireland. Natural Toxins 1999, 7, 99–102. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Opinion of the scientific panel on contaminants in the food chain on a request from the European Commission on marine biotoxins in shellfish—azaspiracids. EFSA J. 2008, 723, 1–52. [Google Scholar]
- European Commission. Regulation No 853/2004 of 29th April 2004 laying down specific hygiene rules for on the hygiene of foodstuff. Off. J. Eur. Union 2004, L139, 55–205. [Google Scholar]
- Furey, A.; O’Doherty, S.; O’Callaghan, K.; Lehane, M.; James, K.J. Azaspiracid poisoning (AZP) toxins in shellfish: toxicological and health considerations. Toxicon 2010, 56, 173–190. [Google Scholar] [CrossRef]
- Twiner, M.J.; Rehmann, N.; Hess, P.; Doucette, G.J. Azaspiracid Shellfish Poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts. Mar. Drugs 2008, 6, 39–72. [Google Scholar] [CrossRef] [PubMed]
- García-Mendoza, E.; Sánchez-Bravo, Y.A.; Turner, A.; Blanco, J.; O’Neil, A.; Mancera-Flores, J.; Pérez-Brunius, P.; Rivas, D.; Almazán-Becerril, A.; Peña-Manjarrez, J.L. Lipophilic toxins in cultivated mussels (Mytilus galloprovincialis) from Baja California, Mexico. Toxicon 2014, 90, 111–123. [Google Scholar] [CrossRef]
- Tillmann, U.; Borel, C.M.; Barrera, F.; Lara, R.; Krock, B.; Almandoz, G.O.; Witt, M.; Trefault, N. Azadinium poporum from the Argentine Continental Shelf, Southwestern Atlantic, produces azaspiracid-2 and azaspiracid-2 phosphate. Harmful Algae 2016, 51, 40–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillmann, U.; Jaén, D.; Fernández, L.; Gottschling, M.; Witt, M.; Blanco, J.; Krock, B. Amphidoma languida (Amphidomatacea, Dinophyceae) with a novel azaspiracid toxin profile identified as the cause of molluscan contamination at the Atlantic coast of southern Spain. Harmful Algae 2017, 62, 113–126. [Google Scholar] [CrossRef]
- Rossi, R.; Dell’Aversano, C.; Krock, B.; Ciminiello, P.; Percopo, I.; Tillmann, U.; Soprano, V.; Zingone, A. Mediterranean Azadinium dexteroporum (Dinophyceae) produces six novel azaspiracids and azaspiracid-35: a structural study by a multi-platform mass spectrometry approach. Anal. Bioanal. Chem. 2017, 409, 1121–1134. [Google Scholar] [CrossRef]
- Ito, E.; Terao, K.; McMahon, T.; Silke, J.; Yasumoto, T. Acute pathological changes in mice caused by crude extracts of novel toxins isolated from Irish mussels. In Harmful Algae, 1st ed.; Reguera, B., Blanco, J., Fernandez, M.L., Wyatt, T., Eds.; Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO: Santiago de Compostela, Spain, 1998; pp. 588–589. [Google Scholar]
- Ito, E.; Satake, M.; Ofuji, K.; Kurita, N.; McMahon, T.; James, K.; Yasumoto, T. Multiple organ damage caused by a new toxin azaspiracid, isolated from mussels produced in Ireland. Toxicon 2000, 38, 917–930. [Google Scholar] [CrossRef]
- Ito, E.; Frederick, M.O.; Koftis, T.V.; Tang, W.; Petrovic, G.; Ling, T.; Nicolaou, K.C. Structure toxicity relationships of synthetic azaspiracid-1 and analogs in mice. Harmful Algae 2006, 5, 586–591. [Google Scholar] [CrossRef]
- Aune, T.; Espenes, A.; Aasen, J.A.; Quilliam, M.A.; Hess, P.; Larsen, S. Study of possible combined toxic effects of azaspiracid-1 and okadaic acid in mice via the oral route. Toxicon 2012, 60, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Ito, E.; Satake, M.; Ofuji, K.; Higashi, M.; Harigaya, K.; McMahon, T.; Yasumoto, T. Chronic effects in mice caused by oral administration of sublethal doses of azaspiracid, a new marine toxin isolated from mussels. Toxicon 2002, 40, 193–203. [Google Scholar] [CrossRef]
- Aasen, J.A.; Espenes, A.; Hess, P.; Aune, T. Sub-lethal dosing of azaspiracid-1 in female NMRI mice. Toxicon 2010, 56, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Pelin, M.; Kilcoyne, J.; Nulty, C.; Hess, P.; Tubaro, A.; Sosa, S. Toxic equivalency factors (TEFs) after acute oral exposure of azaspiracid 1, -2 and -3 in mice. Toxicol. Lett. 2018, 282, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.G.; Nicholls-Grzemski, F.A.; Tirmenstein, M.A.; Fariss, M.W. Vitamin E succinate protects hepatocytes against the toxic effect of reactive oxygen species generated at mitochondrial complexes I and III by alkylating agents. Chem. Biol. Interact. 2001, 138, 267–284. [Google Scholar] [CrossRef]
- van Meerloo, J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: the MTT assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar]
- Bodero, M.; Hoogenboom, R.L.A.P.; Bovee, T.F.H.; Portier, L.; de Haan, L.; Peijnenburg, A.; Hendriksen, P.J.M. Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol. In Vitro 2018, 46, 102–112. [Google Scholar] [CrossRef]
- Kellmann, R.; Schaffner, C.A.; Grønset, T.A.; Satake, M.; Ziegler, M.; Fladmark, K.E. Proteomic response of human neuroblastoma cells to azaspiracid-1. J. Proteomics 2009, 72, 695–707. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.J.; Brand, M.D. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem. J. 2004, 382, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 1999, 79, 1127–1155. [Google Scholar] [CrossRef] [PubMed]
- Garlid, K.D.; Paucek, P. Mitochondrial potassium transport: the K+ cycle. Bioch. Bioph. Acta 2003, 1606, 23–41. [Google Scholar] [CrossRef]
- Higdon, R.; Stewart, E.; Stanberry, L.; Haynes, W.; Choiniere, J.; Montague, E.; Anderson, N.; Yandl, G.; Janko, I.; Broomall, W.; et al. MOPED enables discoveries through consistently processed proteomics data. J. Proteome Res. 2014, 13, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro, S.F.; Vilariño, N.; Louzao, M.C.; Nicolaou, K.C.; Frederick, M.O.; Botana, L.M. In vitro chronic effects on hERG channel caused by the marine biotoxin azaspiracid-2. Toxicon 2014, 91, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Twiner, M.J.; Doucette, G.J.; Rasky, A.; Huang, X.P.; Roth, B.L.; Sanguinetti, M.C. The marine algal toxin azaspiracid is an open state blocker of hERG potassium channels. Chem. Res. Toxicol. 2012, 25, 1975–1984. [Google Scholar] [CrossRef] [Green Version]
- Alexander, S.P.H.; Kelly, E.; Marrion, N.; Peters, J.A.; Benson, H.E.; Faccenda, E.; Pawson, A.J.; Sharman, J.L.; Southan, C.; Davies, J.A.; CGTP Collaborators. The Concise Guide to PHARMACOLOGY 2015/16: other ion channels. Br. J. Pharmacol. 2015, 172, 5942–5955. [Google Scholar] [CrossRef]
- Valdivieso, A.G.; Clauzure, M.; Marín, M.C.; Taminelli, G.L.; Massip Copiz, M.M.; Sánchez, F.; Schulman, G.; Teiber, M.L.; Santa-Coloma, T.A. The mitochondrial complex I activity is reduced in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. PloS ONE 2012, 7, e48059. [Google Scholar] [CrossRef]
- Verkman, A.S.; Galietta, L.J. Chloride channels as drug targets. Nat. Rev. Drug. Discov. 2009, 8, 153–171. [Google Scholar] [CrossRef]
- Pelin, M.; Zanette, C.; De Bortoli, M.; Sosa, S.; Della Loggia, R.; Tubaro, A.; Florio, C. Effects of the marine toxin palytoxin on human skin keratinocytes: role of ionic imbalance. Toxicology 2011, 282, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Pelin, M.; Sosa, S.; Della Loggia, R.; Poli, M.; Tubaro, A.; Decorti, G.; Florio, C. The cytotoxic effect of palytoxin on Caco-2 cells hinders their use for in vitro absorption studies. Food. Chem. Toxicol. 2012, 50, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Pelin, M.; De Iudicibus, S.; Fusco, L.; Taboga, E.; Pellizzari, G.; Lagatolla, C.; Martelossi, S.; Ventura, A.; Decorti, G.; Stocco, G. Role of oxidative stress mediated by glutathione-s-transferase in thiopurines’ toxic effects. Chem. Res. Toxicol. 2015, 28, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
Control (M) | Na+-free (M) | K+-free (M) | Ca2+-free (M) | Cl−-free (M) | |
---|---|---|---|---|---|
NaCl | 1.4 × 10−1 | - | 1.44 × 10−1 | 1.4 × 10−1 | - |
KCl | 4.4 × 10−3 | 4.4 × 10−3 | - | 4.4 × 10−3 | - |
CaCl2 | 2.5 × 10−3 | 2.5 × 10−3 | 2.5 × 10−3 | - | - |
MgSO4 | 1.2 × 10−3 | 1.2 × 10−3 | 1.2 × 10−3 | 1.2 × 10−3 | 1.2 × 10−3 |
KH2PO4 | 1.2 × 10−3 | 1.2 × 10−3 | - | 1.2 × 10−3 | 1.2 × 10−3 |
NaH2PO4 | - | - | 1.2 × 10−3 | - | - |
NaNO3 | - | - | - | - | 1.4 × 10−1 |
Ca(NO3)2 | - | - | - | - | 2.5 × 10−3 |
N-methyl-d-Glucamine | - | 1.4 × 10−1 | - | - | - |
HEPES | 10−2 | 10−2 | 10−2 | 10−2 | 10−2 |
EGTA | - | - | - | 2 × 10−3 | - |
Glucose | 4500 mg/L | 4500 mg/L | 4500 mg/L | 4500 mg/L | 4500 mg/L |
l-Glu | 1.25% | 1.25% | 1.25% | 1.25% | 1.25% |
Penicillin/Streptomycin | 1% | 1% | 1% | 1% | 1% |
Insulin | 10−8 M | 10−8 M | 10−8 M | 10−8 M | 10−8 M |
Dexamethasone (1 mg/mL) | 0.04% | 0.04% | 0.04% | 0.04% | 0.04% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelin, M.; Kilcoyne, J.; Florio, C.; Hess, P.; Tubaro, A.; Sosa, S. Azaspiracids Increase Mitochondrial Dehydrogenases Activity in Hepatocytes: Involvement of Potassium and Chloride Ions. Mar. Drugs 2019, 17, 276. https://doi.org/10.3390/md17050276
Pelin M, Kilcoyne J, Florio C, Hess P, Tubaro A, Sosa S. Azaspiracids Increase Mitochondrial Dehydrogenases Activity in Hepatocytes: Involvement of Potassium and Chloride Ions. Marine Drugs. 2019; 17(5):276. https://doi.org/10.3390/md17050276
Chicago/Turabian StylePelin, Marco, Jane Kilcoyne, Chiara Florio, Philipp Hess, Aurelia Tubaro, and Silvio Sosa. 2019. "Azaspiracids Increase Mitochondrial Dehydrogenases Activity in Hepatocytes: Involvement of Potassium and Chloride Ions" Marine Drugs 17, no. 5: 276. https://doi.org/10.3390/md17050276
APA StylePelin, M., Kilcoyne, J., Florio, C., Hess, P., Tubaro, A., & Sosa, S. (2019). Azaspiracids Increase Mitochondrial Dehydrogenases Activity in Hepatocytes: Involvement of Potassium and Chloride Ions. Marine Drugs, 17(5), 276. https://doi.org/10.3390/md17050276