Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = atypical chromosomal anomalies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 758 KiB  
Review
Prenatal Features of MIRAGE Syndrome—Case Report and Review of the Literature
by Anca Maria Panaitescu, Iulia Huluță, Gabriel-Petre Gorecki, Luminita Nicoleta Cima, Vlad M. Voiculescu, Florina Mihaela Nedelea and Nicolae Gică
Children 2024, 11(3), 310; https://doi.org/10.3390/children11030310 - 5 Mar 2024
Cited by 1 | Viewed by 2921
Abstract
MIRAGE syndrome is a recently described congenital condition characterized genetically by heterozygous gain-of-function missense mutations in the growth repressor sterile alpha domain containing 9 (SAMD9) located on the arm of chromosome 7 (7q21.2). The syndrome is rare and is usually diagnosed in newborns [...] Read more.
MIRAGE syndrome is a recently described congenital condition characterized genetically by heterozygous gain-of-function missense mutations in the growth repressor sterile alpha domain containing 9 (SAMD9) located on the arm of chromosome 7 (7q21.2). The syndrome is rare and is usually diagnosed in newborns and children with myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy, hence the acronym MIRAGE. The aims of this paper are (1) to present fetal ultrasound features in a case where MIRAGE syndrome was diagnosed prenatally and (2) to review the existing literature records on prenatal manifestations of MIRAGE syndrome. In our case, the fetus had severe early fetal growth restriction (FGR) with normal Doppler studies, atypical genitalia, oligohydramnios, and hyperechogenic bowel at the routine mid-gestation anomaly scan. Amniocentesis excluded infections and numeric or structural chromosomal abnormalities while whole exome sequencing (WES) of the fetal genetic material identified the specific mutation. Targeted testing in parents was negative, suggesting the “de novo” mutation in the fetus. We could not identify other specific case reports in the literature on the prenatal diagnosis of MIRAGE syndrome. In cases reported in the literature where the diagnosis of MIRAGE syndrome was achieved postnatally, there are mentions related to the marked FGR on prenatal ultrasound. Severe early-onset FGR with no other apparent cause seems to be a central prenatal feature in these babies, and WES should be offered, especially if there are other structural abnormalities. Prenatal diagnosis of MIRAGE syndrome is possible, allowing for reproductive choices, improved counseling of parents, and better preparation of neonatal care. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

10 pages, 1346 KiB  
Case Report
Unusual Trisomy X Phenotype Associated with a Concurrent Heterozygous 16p11.2 Deletion: Importance of an Integral Approach for Proper Diagnosis
by Ariadna González-del Angel, Miguel Angel Alcántara-Ortigoza, Sandra Ramos, Carolina Algara-Ramírez, Marco Antonio Hernández-Hernández and Lorenza Saenger-Rivas
Int. J. Mol. Sci. 2023, 24(19), 14643; https://doi.org/10.3390/ijms241914643 - 27 Sep 2023
Cited by 1 | Viewed by 2714
Abstract
Trisomy X is the most frequent sex chromosome anomaly in women, but it is often underdiagnosed postnatally because most patients do not show any clinical manifestation. It is estimated that only 10% of patients with trisomy X are diagnosed by clinical findings. Thus, [...] Read more.
Trisomy X is the most frequent sex chromosome anomaly in women, but it is often underdiagnosed postnatally because most patients do not show any clinical manifestation. It is estimated that only 10% of patients with trisomy X are diagnosed by clinical findings. Thus, it has been proposed that the clinical spectrum is not yet fully delimited, and additional uncommon or atypical clinical manifestations could be related to this entity. The present report describes a female carrying trisomy X but presenting atypical manifestations, including severe intellectual disability, short stature, thymus hypoplasia, and congenital hypothyroidism (CH). These clinical findings were initially attributed to trisomy X. However, chromosome microarray analysis (CMA) subsequently revealed that the patient also bears a heterozygous 304-kb deletion at 16p11.2. This pathogenic copy-number variant (CNV) encompasses 13 genes, including TUFM. Some authors recommend that when a phenotype differs from that described for an identified microdeletion, the presence of pathogenic variants in the non-deleted allele should be considered to assess for an autosomal recessive disorder; thus, we used a panel of 697 genes to rule out a pathogenic variant in the non-deleted TUFM allele. We discuss the possible phenotypic modifications that might be related to an additional CNV in individuals with sex chromosome aneuploidy (SCA), as seen in our patient. The presence of karyotype-demonstrated trisomy X and CMA-identified 16p11.2 deletion highlights the importance of always correlating a patient’s clinical phenotype with the results of genetic studies. When the phenotype includes unusual manifestations and/or exhibits discrepancies with that described in the literature, as exemplified by our patient, a more extensive analysis should be undertaken to enable a correct diagnosis that will support proper management, genetic counseling, and medical follow-up. Full article
(This article belongs to the Special Issue Advances in Human Hereditary Diseases: Genetics and Genomics Research)
Show Figures

Figure 1

10 pages, 1543 KiB  
Article
Chromosomal Microarray Analysis Identifies a Novel SALL1 Deletion, Supporting the Association of Haploinsufficiency with a Mild Phenotype of Townes–Brocks Syndrome
by Anna Maria Innoceta, Giulia Olivucci, Giulia Parmeggiani, Emanuela Scarano, Antonella Pragliola and Claudio Graziano
Genes 2023, 14(2), 258; https://doi.org/10.3390/genes14020258 - 19 Jan 2023
Cited by 4 | Viewed by 2467
Abstract
SALL1 heterozygous pathogenic variants cause Townes–Brocks syndrome (TBS), a condition with variable clinical presentation. The main features are a stenotic or imperforate anus, dysplastic ears, and thumb malformations, and other common concerns are hearing impairments, foot malformations, and renal and heart defects. Most [...] Read more.
SALL1 heterozygous pathogenic variants cause Townes–Brocks syndrome (TBS), a condition with variable clinical presentation. The main features are a stenotic or imperforate anus, dysplastic ears, and thumb malformations, and other common concerns are hearing impairments, foot malformations, and renal and heart defects. Most of the pathogenic SALL1 variants are nonsense and frameshift, likely escaping nonsense-mediated mRNA decay and causing disease via a dominant-negative mechanism. Haploinsufficiency may result in mild phenotypes, but only four families with distinct SALL1 deletions have been reported to date, with a few more being of larger size and also affecting neighboring genes. We report on a family with autosomal dominant hearing impairment and mild anal and skeletal anomalies, in whom a novel 350 kb SALL1 deletion, spanning exon 1 and the upstream region, was identified by array comparative genomic hybridization. We review the clinical findings of known individuals with SALL1 deletions and point out that the overall phenotype is milder, especially when compared with individuals who carry the recurrent p.Arg276Ter mutation, but with a possible higher risk of developmental delay. Chromosomal microarray analysis is still a valuable tool in the identification of atypical/mild TBS cases, which are likely underestimated. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Cytogenomics")
Show Figures

Figure 1

13 pages, 792 KiB  
Article
Initial Clinical Experience with NIPT for Rare Autosomal Aneuploidies and Large Copy Number Variations
by Thomas Harasim, Teresa Neuhann, Anne Behnecke, Miriam Stampfer, Elke Holinski-Feder and Angela Abicht
J. Clin. Med. 2022, 11(2), 372; https://doi.org/10.3390/jcm11020372 - 13 Jan 2022
Cited by 20 | Viewed by 3559
Abstract
Objective: Amniocentesis, chorionic villi sampling and first trimester combined testing are able to screen for common trisomies 13, 18, and 21 and other atypical chromosomal anomalies (ACA). The most frequent atypical aberrations reported are rare autosomal aneuploidies (RAA) and copy number variations (CNV), [...] Read more.
Objective: Amniocentesis, chorionic villi sampling and first trimester combined testing are able to screen for common trisomies 13, 18, and 21 and other atypical chromosomal anomalies (ACA). The most frequent atypical aberrations reported are rare autosomal aneuploidies (RAA) and copy number variations (CNV), which are deletions or duplications of various sizes. We evaluated the clinical outcome of non-invasive prenatal testing (NIPT) results positive for RAA and large CNVs to determine the clinical significance of these abnormal results. Methods: Genome-wide NIPT was performed on 3664 eligible patient samples at a single genetics center. For patients with positive NIPT reports, the prescribing physician was asked retrospectively to provide clinical follow-up information using a standardized questionnaire. Results: RAAs and CNVs (>7 Mb) were detected in 0.5%, and 0.2% of tested cases, respectively. Follow up on pregnancies with an NIPT-positive result for RAA revealed signs of placental insufficiency or intra-uterine death in 50% of the cases and normal outcome at the time of birth in the other 50% of cases. We showed that CNV testing by NIPT allows for the detection of unbalanced translocations and relevant maternal health conditions. Conclusion: NIPT for aneuploidies of all autosomes and large CNVs of at least 7 Mb has a low “non-reportable”-rate (<0.2%) and allows the detection of additional conditions of clinical significance. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

14 pages, 21528 KiB  
Communication
Genetic Instability Due to Spindle Anomalies Visualized in Mutants of Dictyostelium
by Mary Ecke, Jana Prassler and Günther Gerisch
Cells 2021, 10(9), 2240; https://doi.org/10.3390/cells10092240 - 29 Aug 2021
Cited by 1 | Viewed by 2322
Abstract
Aberrant centrosome activities in mutants of Dictyostelium discoideum result in anomalies of mitotic spindles that affect the reliability of chromosome segregation. Genetic instabilities caused by these deficiencies are tolerated in multinucleate cells, which can be produced by electric-pulse induced cell fusion as a [...] Read more.
Aberrant centrosome activities in mutants of Dictyostelium discoideum result in anomalies of mitotic spindles that affect the reliability of chromosome segregation. Genetic instabilities caused by these deficiencies are tolerated in multinucleate cells, which can be produced by electric-pulse induced cell fusion as a source for aberrations in the mitotic apparatus of the mutant cells. Dual-color fluorescence labeling of the microtubule system and the chromosomes in live cells revealed the variability of spindle arrangements, of centrosome-nuclear interactions, and of chromosome segregation in the atypical mitoses observed. Full article
(This article belongs to the Special Issue Comparative Biology of Microtubule Organization in Eukaryotes)
Show Figures

Figure 1

13 pages, 905 KiB  
Article
Strategy for Use of Genome-Wide Non-Invasive Prenatal Testing for Rare Autosomal Aneuploidies and Unbalanced Structural Chromosomal Anomalies
by Pascale Kleinfinger, Laurence Lohmann, Armelle Luscan, Detlef Trost, Laurent Bidat, Véronique Debarge, Vanina Castaigne, Marie-Victoire Senat, Marie-Pierre Brechard, Lucie Guilbaud, Gwenaël Le Guyader, Véronique Satre, Hélène Laurichesse Delmas, Hakima Lallaoui, Marie-Christine Manca-Pellissier, Aicha Boughalem, Mylene Valduga, Farah Hodeib, Alexandra Benachi and Jean Marc Costa
J. Clin. Med. 2020, 9(8), 2466; https://doi.org/10.3390/jcm9082466 - 1 Aug 2020
Cited by 19 | Viewed by 5563
Abstract
Atypical fetal chromosomal anomalies are more frequent than previously recognized and can affect fetal development. We propose a screening strategy for a genome-wide non-invasive prenatal test (NIPT) to detect these atypical chromosomal anomalies (ACAs). Two sample cohorts were tested. Assay performances were determined [...] Read more.
Atypical fetal chromosomal anomalies are more frequent than previously recognized and can affect fetal development. We propose a screening strategy for a genome-wide non-invasive prenatal test (NIPT) to detect these atypical chromosomal anomalies (ACAs). Two sample cohorts were tested. Assay performances were determined using Cohort A, which consisted of 192 biobanked plasma samples—42 with ACAs, and 150 without. The rate of additional invasive diagnostic procedures was determined using Cohort B, which consisted of 3097 pregnant women referred for routine NIPT. Of the 192 samples in Cohort A, there were four initial test failures and six discordant calls; overall sensitivity was 88.1% (37/42; CI 75.00–94.81) and specificity was 99.3% (145/146; CI 96.22–99.88). In Cohort B, there were 90 first-pass failures (2.9%). The rate of positive results indicating an anomaly was 1.2% (36/3007) and 0.57% (17/3007) when limited to significant unbalanced chromosomal anomalies and trisomies 8, 9, 12, 14, 15, 16, and 22. These results show that genome-wide NIPT can screen for ACAs with an acceptable sensitivity and a small increase in invasive testing, particularly for women with increased risk following maternal serum screening and by limiting screening to structural anomalies and the most clinically meaningful trisomies. Full article
(This article belongs to the Special Issue Prenatal Genetic Screening and Diagnosis)
Show Figures

Figure 1

Back to TopTop