Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = attention-guided gradient projection network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 670 KiB  
Article
LDC-GAT: A Lyapunov-Stable Graph Attention Network with Dynamic Filtering and Constraint-Aware Optimization
by Liping Chen, Hongji Zhu and Shuguang Han
Axioms 2025, 14(7), 504; https://doi.org/10.3390/axioms14070504 - 27 Jun 2025
Viewed by 229
Abstract
Graph attention networks are pivotal for modeling non-Euclidean data, yet they face dual challenges: training oscillations induced by projection-based high-dimensional constraints and gradient anomalies due to poor adaptation to heterophilic structure. To address these issues, we propose LDC-GAT (Lyapunov-Stable Graph Attention Network with [...] Read more.
Graph attention networks are pivotal for modeling non-Euclidean data, yet they face dual challenges: training oscillations induced by projection-based high-dimensional constraints and gradient anomalies due to poor adaptation to heterophilic structure. To address these issues, we propose LDC-GAT (Lyapunov-Stable Graph Attention Network with Dynamic Filtering and Constraint-Aware Optimization), which jointly optimizes both forward and backward propagation processes. In the forward path, we introduce Dynamic Residual Graph Filtering, which integrates a tunable self-loop coefficient to balance neighborhood aggregation and self-feature retention. This filtering mechanism, constrained by a lower bound on Dirichlet energy, improves multi-head attention via multi-scale fusion and mitigates overfitting. In the backward path, we design the Fro-FWNAdam, a gradient descent algorithm guided by a learning-rate-aware perceptron. An explicit Frobenius norm bound on weights is derived from Lyapunov theory to form the basis of the perceptron. This stability-aware optimizer is embedded within a Frank–Wolfe framework with Nesterov acceleration, yielding a projection-free constrained optimization strategy that stabilizes training dynamics. Experiments on six benchmark datasets show that LDC-GAT outperforms GAT by 10.54% in classification accuracy, which demonstrates strong robustness on heterophilic graphs. Full article
(This article belongs to the Section Mathematical Analysis)
Show Figures

Figure 1

18 pages, 3766 KiB  
Article
Self-Supervised Multiscale Contrastive and Attention-Guided Gradient Projection Network for Pansharpening
by Qingping Li, Xiaomin Yang, Bingru Li and Jin Wang
Sensors 2025, 25(8), 2560; https://doi.org/10.3390/s25082560 - 18 Apr 2025
Cited by 2 | Viewed by 584
Abstract
Pansharpening techniques are crucial in remote sensing image processing, with deep learning emerging as the mainstream solution. In this paper, the pansharpening problem is formulated as two optimization subproblems with a solution proposed based on multiscale contrastive learning combined with attention-guided gradient projection [...] Read more.
Pansharpening techniques are crucial in remote sensing image processing, with deep learning emerging as the mainstream solution. In this paper, the pansharpening problem is formulated as two optimization subproblems with a solution proposed based on multiscale contrastive learning combined with attention-guided gradient projection networks. First, an efficient and generalized Spectral–Spatial Universal Module (SSUM) is designed and applied to spectral and spatial enhancement modules (SpeEB and SpaEB). Then, the multiscale high-frequency features of PAN and MS images are extracted using discrete wavelet transform (DWT). These features are combined with contrastive learning and residual connection to progressively balance spectral and spatial information. Finally, high-resolution multispectral images are generated through multiple iterations. Experimental results verify that the proposed method outperforms existing approaches in both visual quality and quantitative evaluation metrics. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

15 pages, 558 KiB  
Article
A Water Demand Forecasting Model Based on Generative Adversarial Networks and Multivariate Feature Fusion
by Changchun Yang, Jiayang Meng, Banteng Liu, Zhangquan Wang and Ke Wang
Water 2024, 16(12), 1731; https://doi.org/10.3390/w16121731 - 19 Jun 2024
Cited by 4 | Viewed by 1772
Abstract
Accurate long-term water demand forecasting is beneficial to the sustainable development and management of cities. However, the randomness and nonlinear nature of water demand bring great challenges to accurate long-term water demand forecasting. For accurate long-term water demand forecasting, the models currently in [...] Read more.
Accurate long-term water demand forecasting is beneficial to the sustainable development and management of cities. However, the randomness and nonlinear nature of water demand bring great challenges to accurate long-term water demand forecasting. For accurate long-term water demand forecasting, the models currently in use demand the input of extensive datasets, leading to increased costs for data gathering and higher barriers to entry for predictive projects. This situation underscores the pressing need for an effective forecasting method that can operate with a smaller dataset, making long-term water demand predictions more feasible and economically sensible. This study proposes a framework to delineate and analyze long-term water demand patterns. A forecasting model based on generative adversarial networks and multivariate feature fusion (the water demand forecast-mixer, WDF-mixer) is designed to generate synthetic data, and a gradient constraint is introduced to overcome the problem of overfitting. A multi-feature fusion method based on temporal and channel features is then derived, where a multi-layer perceptron is used to capture temporal dependencies and non-negative matrix decomposition is applied to obtain channel dependencies. After that, an attention layer receives all those features associated with the water demand forecasting, guiding the model to focus on important features and representing correlations across them. Finally, a fully connected network is constructed to improve the modeling efficiency and output the forecasting results. This approach was applied to real-world datasets. Our experimental results on four water demand datasets show that the proposed WDF-mixer model can achieve high forecasting accuracy and robustness. In comparison to the suboptimal models, the method introduced in this study demonstrated a notable enhancement, with a 62.61% reduction in the MSE, a 46.85% decrease in the MAE, and a 69.15% improve in the R2 score. This research could support decision makers in reducing uncertainty and increasing the quality of water resource planning and management. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

Back to TopTop