Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = astaxanthin monoesters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2164 KB  
Article
Dietary Supplementation with Algae Powders and Carotenoids Enhances Growth Performance and Tissue-Specific Carotenoid Accumulation in Penaeus Vannamei
by Pujiang Liu, Chengwei Huang, Qian Shen, Qijun Luo, Rui Yang, Haimin Chen, Wei Wu and Juanjuan Chen
Animals 2025, 15(11), 1550; https://doi.org/10.3390/ani15111550 - 25 May 2025
Cited by 1 | Viewed by 1236
Abstract
The pigmentation and coloration of P. vannamei are primarily determined by the type and concentration of dietary carotenoids, with carotenoid-rich macroalgae serving as effective dietary supplements to enhance pigment accumulation and improve commercial quality. Five experimental diets were formulated with 3% brown algae [...] Read more.
The pigmentation and coloration of P. vannamei are primarily determined by the type and concentration of dietary carotenoids, with carotenoid-rich macroalgae serving as effective dietary supplements to enhance pigment accumulation and improve commercial quality. Five experimental diets were formulated with 3% brown algae (Saccharina japonica, SJ group; Sargassum fusiforme, SF group), red algae (Neoporphyra haitanensis, NH group), or 0.1% purified carotenoids (zeaxanthin, ZT group; fucoxanthin, FX group). The results showed that both macroalgae and carotenoid supplementation significantly enhanced weight gain rate (WGR) and specific growth rate (SGR) compared to the control group, with the zeaxanthin and fucoxanthin groups exhibiting the greatest improvements (1.6-fold and 1.3-fold, respectively). The N. haitanensis-supplemented diet, which had the highest carotenoid content, resulted in the most pronounced carotenoid accumulation (2.58-fold increase). Carotenoids were mainly deposited in the exoskeleton, followed by the hepatopancreas, with minimal accumulation in muscle tissue. α-Carotene and β-carotene contributed most to exoskeleton deposition, while lutein and zeaxanthin had weaker effects, and fucoxanthin showed no significant influence. Tissue-specific distribution patterns were observed: α-carotene and β-carotene were localized in the exoskeleton; fucoxanthin and zeaxanthin were found only in the exoskeleton and hepatopancreas, and astaxanthin was present in all three tissues. Furthermore, astaxanthin diesters (C20:5 and C22:6) were primarily detected in the exoskeleton and hepatopancreas, while monoesters (C16:0 and C18:0) were specific to muscle. These findings suggest that targeted supplementation of algal-derived carotenoids can enhance both growth and pigmentation in P. vannamei, providing a theoretical basis for the development of functional feeds to improve shrimp commercial quality. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

20 pages, 9483 KB  
Article
Study on Newly Isolated Dysmorphococcus Strains from Reunion Island as Potential Sources of High-Value Carotenoids
by Samuel Jannel, Yanis Caro, Marc Bermudes and Thomas Petit
Foods 2024, 13(23), 3922; https://doi.org/10.3390/foods13233922 - 4 Dec 2024
Cited by 1 | Viewed by 1380
Abstract
Certain secondary carotenoids, such as astaxanthin and canthaxanthin, are of growing economic interest in the fields of human nutrition, food, health and cosmetics, as well as feed and aquaculture, particularly due to their numerous biological activities, such as their remarkable antioxidant properties. The [...] Read more.
Certain secondary carotenoids, such as astaxanthin and canthaxanthin, are of growing economic interest in the fields of human nutrition, food, health and cosmetics, as well as feed and aquaculture, particularly due to their numerous biological activities, such as their remarkable antioxidant properties. The present study was devoted to assessing, in a photobioreactor, the feasibility of cultivating newly isolated Dysmorphococcus strains from the biodiversity of Reunion Island for the production of these valuable xanthophylls. The results showed that all these strains were capable of producing and accumulating canthaxanthin and astaxanthin in response to environmental stresses. Among them, a strain which presented interesting morphological, genetic and biochemical properties as compared to the other Dysmorphococcus strains was further cultivated in a 3 L benchtop photobioreactor and was found to produce maximum carotenoid-rich biomass concentrations and productivities of about 4 g L−1 dw and 0.055 g L−1 d−1 dw, respectively. We also found that the biomass contained up to 1.2 mg g−1 dw of canthaxanthin and 0.7 mg g−1 dw of different forms of astaxanthin, mainly astaxanthin monoesters. The productivity of these carotenoids was found to be lower than those observed for other microalgal species previously reported, and we suggested that further optimizations with respect to the cultivation and the carotenogenesis induction processes are needed to improve productivities and to make this locally isolated Dysmorphococcus strain useful for future commercial production of natural canthaxanthin and astaxanthin. Full article
Show Figures

Figure 1

26 pages, 11035 KB  
Article
Exploration of the Biotechnological Potential of Two Newly Isolated Haematococcus Strains from Reunion Island for the Production of Natural Astaxanthin
by Samuel Jannel, Yanis Caro, Marc Bermudes and Thomas Petit
Foods 2024, 13(22), 3681; https://doi.org/10.3390/foods13223681 - 19 Nov 2024
Cited by 2 | Viewed by 1760
Abstract
Haematococcus lacustris is a freshwater green microalgae species able to produce and accumulate astaxanthin in response to environmental stresses such as high light and nutrient deprivation. Astaxanthin is a xanthophyll carotenoid of growing economic interest due to its numerous biological activities, notably its [...] Read more.
Haematococcus lacustris is a freshwater green microalgae species able to produce and accumulate astaxanthin in response to environmental stresses such as high light and nutrient deprivation. Astaxanthin is a xanthophyll carotenoid of growing economic interest due to its numerous biological activities, notably its strong antioxidant properties, which can be valued in the fields of nutrition, health, feed and aquaculture. The present study aims at evaluating the capacity of two newly isolated Haematococcus strains from the biodiversity of Reunion Island, to be cultivated in a photobioreactor and to produce astaxanthin. The results showed that both strains were able to grow in various nutritive media and to produce and accumulate astaxanthin in response to stresses, mainly in the form of astaxanthin monoesters, which represented up to 2% of the dry biomass weight and which were mostly composed of linoleic and linolenic acids. In fed-batch cultures using 3 L benchtop photobioreactors, the concentrations of biomass enriched in astaxanthin reached up to 3 g L−1 (dry weight) with biomass productivities of 0.04 and 0.02 g L−1 d−1 based on the durations of the vegetative stage and of the entire culture, respectively. In these cultures, the astaxanthin productivities were found to reach on average around 0.25 mg L−1 d−1. Although these results were relatively low compared to the literature, the possibility of improving growth conditions in order to improve biomass and astaxanthin yields, to guarantee economic viability for cultivation at a commercial scale, was further discussed. Full article
Show Figures

Figure 1

25 pages, 4626 KB  
Article
Astaxanthin Extract from Haematococcus pluvialis and Its Fractions of Astaxanthin Mono- and Diesters Obtained by CCC Show Differential Antioxidant and Cytoprotective Effects on Naïve-Mouse Spleen Cells
by Zuzana Jurčacková, Denisa Ciglanová, Dagmar Mudroňová, Lenka Tumová, Daniela Bárcenas-Pérez, Jiří Kopecký, Jana Koščová, José Cheel and Gabriela Hrčková
Antioxidants 2023, 12(6), 1144; https://doi.org/10.3390/antiox12061144 - 24 May 2023
Cited by 4 | Viewed by 4520
Abstract
Carotenoids are the most abundant lipid-soluble phytochemicals and are used as dietary supplements to protect against diseases caused by oxidative stress. Astaxanthin, a xanthophyll carotenoid, is a very potent antioxidant with numerous beneficial effects on cellular functions and signaling pathways. In this study, [...] Read more.
Carotenoids are the most abundant lipid-soluble phytochemicals and are used as dietary supplements to protect against diseases caused by oxidative stress. Astaxanthin, a xanthophyll carotenoid, is a very potent antioxidant with numerous beneficial effects on cellular functions and signaling pathways. In this study, using spleen cells from healthy Balb/c mice, we report the bio-functional effects of an astaxanthin-rich extract (EXT) prepared from the microalga Haematococcus pluvialis and its astaxanthin monoesters-rich fraction (ME) and astaxanthin diesters-rich fraction (DE) obtained by fractionation of EXT using countercurrent chromatography (CCC). After incubation under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen), the viability of untreated splenocytes, as determined by the trypan blue exclusion assay, the MTT assay, and the neutral red assay, decreases to approximately 75% after 24 h compared with naïve splenocytes. This effect correlated with the decrease in mitochondrial membrane potential and the transition of ~59% of cells to the early stage of apoptosis, as well as with the decreased ROS production, indicating that hyperoxia in cell-culture deteriorates cell functions. They are restored or stimulated by co-cultivation with EXT, ME, and DE up to 10 µg/mL in the order EXT > DE > ME, suggesting that esterification increases bioavailability to cells in vitro. ROS and H2O2 concentrations reflect mRNA transcriptional activity of Nrf2, superoxide dismutase 1 (SOD1), catalase, and glutathione peroxidase 1, as well as SOD-mediated ROS conversion, whereas they inversely correlate with iNOS-mediated NO production. The highest-tested concentration of EXT, ME, and DE (40 µg/mL) is detrimental to cells, probably because of the overwhelming scavenging activity of astaxanthin and its esters for the reactive oxygen/nitrogen species required for cellular functions and signal transduction at low physiological concentrations. In this study, we demonstrate that differential activities of ME and DE contribute to the final antioxidant and cytoprotective effects of astaxanthin extract, which is beneficial in preventing a wide range of ROS-induced adverse effects, with DE being more effective. In addition, the selection of physioxia-like conditions for pharmacological research is highlighted. Full article
Show Figures

Figure 1

14 pages, 2979 KB  
Article
Diversity and Content of Carotenoids and Other Pigments in the Transition from the Green to the Red Stage of Haematococcus pluvialis Microalgae Identified by HPLC-DAD and LC-QTOF-MS
by Veno Jaša Grujić, Biljana Todorović, Roman Kranvogl, Terezija Ciringer and Jana Ambrožič-Dolinšek
Plants 2022, 11(8), 1026; https://doi.org/10.3390/plants11081026 - 9 Apr 2022
Cited by 19 | Viewed by 5033
Abstract
H. pluvialis is a unicellular freshwater alga containing many bioactive compounds, especially carotenoids, which are the strongest antioxidants among the pigments. This study evaluates the composition and content of carotenoids and other pigments in both stages of algae life cycle, especially in the [...] Read more.
H. pluvialis is a unicellular freshwater alga containing many bioactive compounds, especially carotenoids, which are the strongest antioxidants among the pigments. This study evaluates the composition and content of carotenoids and other pigments in both stages of algae life cycle, especially in the green vegetative stage, less studied in comparison to the red stage. To determine the composition and content of carotenoids, a combination of HPLC-DAD and LC-QTOF-MS was used. The content of carotenoids in the green vegetative stage was significantly lower than in the red vegetative stage. In the green vegetative stage, 16 different carotenoids and other pigments were identified. Among the total 8.86 mg g−1 DW of pigments, 5.24 mg g−1 DW or 59% of them were chlorophyll a with its derivatives, and 3.62 mg g−1 DW or 41% of them were free carotenoids. After the transition from the green to the red stage, the carotenoid composition was replaced by secondary carotenoids, astaxanthin and its esters, which predominated in the whole carotenoid composition. In addition to free astaxanthin, 12 astaxanthin monoesters, 6 diesters and 13 other carotenoids were determined. The majority of 37.86 mg g−1 DW pigments were monoesters. They represented 82% of all pigments, and their content was about 5 times higher than both, diesters (5.91 mg g−1 DW or 12% of all) and free carotenoids (2.4 mg g−1 DW or 6% of all). The results of the study contribute to the data on the overall pigment composition and content of H. pluvialis algae and provide the basis for further improvement of cultivation of the H. pluvialis algae. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

14 pages, 1863 KB  
Article
Identification and Content of Astaxanthin and Its Esters from Microalgae Haematococcus pluvialis by HPLC-DAD and LC-QTOF-MS after Extraction with Various Solvents
by Biljana Todorović, Veno Jaša Grujić, Andreja Urbanek Krajnc, Roman Kranvogl and Jana Ambrožič-Dolinšek
Plants 2021, 10(11), 2413; https://doi.org/10.3390/plants10112413 - 9 Nov 2021
Cited by 28 | Viewed by 8163
Abstract
Haematococcus pluvialis, a unicellular green microalga that produces a secondary metabolite under stress conditions, bears one of the most potent antioxidants, namely xanthophyll astaxanthin. The aim of our study was to determine the content of astaxanthin and its esterified forms using three [...] Read more.
Haematococcus pluvialis, a unicellular green microalga that produces a secondary metabolite under stress conditions, bears one of the most potent antioxidants, namely xanthophyll astaxanthin. The aim of our study was to determine the content of astaxanthin and its esterified forms using three different solvents—methyl tert-butyl ether (MTBE), hexane isopropanol (HEX -IPA) and acetone (ACE)—and to identify them by using high performance liquid chromatography coupled with diode array detection and the quadrupole time-of-flight mass spectrometry (HPLC-DAD and LC-QTOF-MS) technique. We identified eleven astaxanthin monoesters, which accounted for 78.8% of the total astaxanthin pool, six astaxanthin diesters (20.5% of total), while free astaxanthin represented the smallest fraction (0.7%). Astaxanthin monoesters (C16:2, C16:1, C16:0), which were the major bioactive compounds in the H. pluvialis samples studied, ranged from 10.2 to 11.8 mg g−1 DW. Astaxanthin diesters (C18:4/C18:3, C18:1/C18:3) were detected in the range between 2.3 and 2.6 mg g−1 DW. All three solvents were found to be effective for extraction, but MTBE and hexane-isopropanol extracted the greatest amount of free bioactive astaxanthin. Furthermore, MTBE extracted more low-chain astaxanthin monoesters (C16), and hexane-isopropanol extracted more long-chain monoesters (C18 and above) and more diesters. We can conclude that MTBE is the solvent of choice for the extraction of monoesters and hexane-isopropanol for diesters. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants II)
Show Figures

Figure 1

15 pages, 4484 KB  
Article
Docosahexaenoic Acid-Acylated Astaxanthin Esters Exhibit Superior Renal Protective Effect to Recombination of Astaxanthin with DHA via Alleviating Oxidative Stress Coupled with Apoptosis in Vancomycin-Treated Mice with Nephrotoxicity
by Hao-Hao Shi, Ying Guo, Li-Pin Chen, Cheng-Cheng Wang, Qing-Rong Huang, Chang-Hu Xue, Yu-Ming Wang and Tian-Tian Zhang
Mar. Drugs 2021, 19(9), 499; https://doi.org/10.3390/md19090499 - 31 Aug 2021
Cited by 4 | Viewed by 3549
Abstract
Prevention of acute kidney injury caused by drugs is still a clinical problem to be solved urgently. Astaxanthin (AST) and docosahexaenoic acid (DHA) are important marine-derived active ingredients, and they are reported to exhibit renal protective activity. It is noteworthy that the existing [...] Read more.
Prevention of acute kidney injury caused by drugs is still a clinical problem to be solved urgently. Astaxanthin (AST) and docosahexaenoic acid (DHA) are important marine-derived active ingredients, and they are reported to exhibit renal protective activity. It is noteworthy that the existing forms of AST in nature are mainly fatty acid-acylated AST monoesters and diesters, as well as unesterified AST, in which DHA is an esterified fatty acid. However, no reports focus on the different bioactivities of unesterified AST, monoesters and diesters, as well as the recombination of DHA and unesterified AST on nephrotoxicity. In the present study, vancomycin-treated mice were used to evaluate the effects of DHA-acylated AST monoesters, DHA-acylated AST diesters, unesterified AST, and the recombination of AST and DHA in alleviating nephrotoxicity by determining serum biochemical index, histopathological changes, and the enzyme activity related to oxidative stress. Results found that the intervention of DHA-acylated AST diesters significantly ameliorated kidney dysfunction by decreasing the levels of urea nitrogen and creatinine, alleviating pathological damage and oxidative stress compared to AST monoester, unesterified AST, and the recombination of AST and DHA. Further studies revealed that dietary DHA-acylated AST esters could inhibit the activation of the caspase cascade and MAPKs signaling pathway, and reduce the levels of pro-inflammatory cytokines. These findings indicated that the administration of DHA-acylated AST esters could alleviate vancomycin-induced nephrotoxicity, which represented a potentially novel candidate or therapeutic adjuvant for alleviating acute kidney injury. Full article
Show Figures

Figure 1

13 pages, 2628 KB  
Article
Comparison of Different Methods for Extracting the Astaxanthin from Haematococcus pluvialis: Chemical Composition and Biological Activity
by Yicheng Tan, Zhang Ye, Mansheng Wang, Muhammad Faisal Manzoor, Rana Muhammad Aadil, Xinghe Tan and Zhiwei Liu
Molecules 2021, 26(12), 3569; https://doi.org/10.3390/molecules26123569 - 11 Jun 2021
Cited by 28 | Viewed by 5932
Abstract
In this study, the impact of different cell disruption techniques (high-pressure micro fluidization (HPMF), ionic liquids (ILs), multi-enzyme (ME), and hydrochloric acid (HCl)) on the chemical composition and biological activity of astaxanthin (AST) obtained from Haematococcus pluvialis was investigated. Results indicated that all [...] Read more.
In this study, the impact of different cell disruption techniques (high-pressure micro fluidization (HPMF), ionic liquids (ILs), multi-enzyme (ME), and hydrochloric acid (HCl)) on the chemical composition and biological activity of astaxanthin (AST) obtained from Haematococcus pluvialis was investigated. Results indicated that all cell disruption techniques had a significant effect on AST composition, which were confirmed by TLC and UPC2 analysis. AST recovery from HCl (HCl-AST) and ILs (ILs-AST) cell disruption techniques was dominant by free and monoesters AST, while AST recovery from HPMF (HPMF-AST) and ME (ME-AST) cell disruption techniques was composed of monoesters, diesters, and free AST. Further biological activity analysis displayed that HCl-AST showed the highest ABTS and DPPH activity, while ILs-AST showed better results against the ORAC assay. Additionally, ILs-AST exhibits a stronger anti-proliferation of HepG2 cells in a dose-dependent manner, which was ascribed to AST-induced ROS in to inhibit the proliferative of cancer cells. Full article
Show Figures

Figure 1

Back to TopTop