Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = apical defoliation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 751 KB  
Article
The Combined Effect of Late Pruning and Apical Defoliation After Veraison on Kékfrankos (Vitis vinifera L.)
by Szabolcs Villangó, Katalin Patonay, Marietta Korózs and Zsolt Zsófi
Horticulturae 2025, 11(12), 1450; https://doi.org/10.3390/horticulturae11121450 - 30 Nov 2025
Viewed by 586
Abstract
This study evaluated the effects of late pruning and late apical leaf removal on grapevine phenology, fruit composition, yield parameters, xylem sap carbohydrate content, and grape skin polyphenol levels over two consecutive vintages (2022 and 2023). As expected, delayed pruning shifted the phenological [...] Read more.
This study evaluated the effects of late pruning and late apical leaf removal on grapevine phenology, fruit composition, yield parameters, xylem sap carbohydrate content, and grape skin polyphenol levels over two consecutive vintages (2022 and 2023). As expected, delayed pruning shifted the phenological stages, with more pronounced delays observed in 2022 than in 2023. However, by August, all the treatments had reached the berry-softening stage, indicating a convergence in ripening. The grape juice composition showed no significant differences in sugar content in 2022; however, in 2023, the °Brix was notably reduced in control vines subjected to late apical defoliation. The titratable acidity and pH remained stable across treatments and years, while the malic acid concentrations were consistently higher in the late-pruned treatments, particularly LP2 (late pruning 2 was performed when the control vines had reached the eight-leaves-folded development stage). Late pruning significantly reduced the yield and bunch size, especially for the 2023 LP2 treatment. In contrast, late apical defoliation had minimal impact on the yield components. Vegetative growth, as assessed by cane diameter and weight, also declined under late pruning. Despite this, the xylem sap analysis revealed no significant changes in the glucose, fructose, or myo-inositol levels, suggesting that the carbohydrate reserves remained unaffected. Notably, LP2 consistently resulted in the highest total polyphenol content in the grape skins across both years, indicating enhanced phenolic maturity. Although the polyphenol concentrations were generally higher in 2023, the treatment effects varied more widely, likely due to the differing environmental conditions. These findings suggest that late pruning—particularly LP2—can be a valuable tool for improving grape phenolic quality, albeit at the cost of reduced yield and vine vigor. This study highlights the importance of site- and season-specific canopy management strategies in balancing fruit quality with productivity under variable climatic conditions. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

16 pages, 599 KB  
Article
Effects of Apical, Late-Season Leaf Removal on Vine Performance and Wine Properties in Sangiovese Grapevines (Vitis vinifera L.)
by Alberto Vercesi, Mario Gabrielli, Alessandra Garavani and Stefano Poni
Horticulturae 2024, 10(9), 929; https://doi.org/10.3390/horticulturae10090929 - 30 Aug 2024
Cited by 3 | Viewed by 1906
Abstract
An urgent challenge posed by climate change in warm grapevine-growing areas is accelerated ripening, which leads to rapid sugar accumulation while phenolics and aroma traits lag behind. Techniques that enable selectively delaying the sugar accumulation process without affecting the accumulation of secondary metabolites [...] Read more.
An urgent challenge posed by climate change in warm grapevine-growing areas is accelerated ripening, which leads to rapid sugar accumulation while phenolics and aroma traits lag behind. Techniques that enable selectively delaying the sugar accumulation process without affecting the accumulation of secondary metabolites are essential. This study aimed to evaluate the effects of apical-to-cluster defoliation, manually applied in 2019 at the onset of veraison (D1) or 20 days later (D2), which removed about 30–40% of the pending total leaf area without altering the cluster microclimate compared with a non-defoliated control (C). Ripening trends, vegetative growth, yield components, and the final grape and wine composition, as well as wine sensorial attributes, were assessed. Although both treatments significantly lowered the final leaf area-to-yield ratio (0.80–0.90 m2/kg) compared with the 1.35 m2/kg recorded in the C vines, only D1 reduced the final total soluble solids (TSS) at harvest (2 °Brix less than C). However, the total anthocyanins were similarly limited, and titratable acidity (TA) did not differ from the C vines. The D1 wine was deemed similar to that made from control plants. Conversely, D2 failed to delay ripening, yet the D2 wine was deemed superior in terms of olfactory intensity, body, fruitiness, balance, and overall preference. Although the study was conducted over a single season, the results are robust enough to conclude that the timing of defoliation—i.e., the level of TSS concurrently reached by the C treatment—is crucial to achieving specific effects. Early defoliation appears valid for postponing ripening into a cooler period, making it quite interesting in warm–hot areas with a very long growing season; a much later defoliation, likely due to the interaction between mean canopy age and more light filtering from above the cluster zone, can elevate the quality of and appreciation for the final wine. Full article
(This article belongs to the Topic Effects of Climate Change on Viticulture (Grape))
Show Figures

Figure 1

12 pages, 1277 KB  
Article
Early Canopy Management Practices Differentially Modulate Fruit Set, Fruit Yield, and Berry Composition at Harvest Depending on the Grapevine Cultivar
by Alessandro Mataffo, Pasquale Scognamiglio, Carlo Molinaro, Giandomenico Corrado and Boris Basile
Plants 2023, 12(4), 733; https://doi.org/10.3390/plants12040733 - 7 Feb 2023
Cited by 7 | Viewed by 3017
Abstract
The size and number of the berries and the rachis length are the main elements that define bunch compactness in grapevine (Vitis vinifera L.). This trait is of scientific and commercial interest because it strongly influences phytosanitary status and quality of the [...] Read more.
The size and number of the berries and the rachis length are the main elements that define bunch compactness in grapevine (Vitis vinifera L.). This trait is of scientific and commercial interest because it strongly influences phytosanitary status and quality of the fruits. In this work, we investigated the effect of different canopy management strategies based on apical shoot and/or leaf removal applied at the early stage (pre-bloom) in altering the key determinants of bunch compactness. Specifically, we compared apical defoliation (removal of the first half of the shoot leaves from the top), basal defoliation (removal of the second half), and shoot trimming (removal of the apical half of the shoot) to untreated controls. The work was carried out in two red varieties (‘Aglianico’ and ‘Casavecchia’) that have contrasting bunch compactness (compact and loose, respectively). We measured relevant morphological traits, photosynthetic rates, fertility, fruit set, bunch architecture, and fruit main compositional parameters. This study demonstrates that the position of the removed shoot leaves along with the shoot trimming differentially modified fruit set, the number of berries per bunch, and berry fresh weight and composition at harvest. Nonetheless, the influence on bunch compactness was limited mainly because of photosynthetic and morphological factors strongly associated with the cultivar. Full article
(This article belongs to the Special Issue Grapevine Responses to Environmental Challenges, Volume II)
Show Figures

Figure 1

13 pages, 4838 KB  
Article
Leaf Removal Applied to a Sprawling Canopy to Regulate Fruit Ripening in Cabernet Sauvignon
by Patrick O’Brien, Cassandra Collins and Roberta De Bei
Plants 2021, 10(5), 1017; https://doi.org/10.3390/plants10051017 - 19 May 2021
Cited by 11 | Viewed by 3533
Abstract
Under the effects of climate change, it is becoming increasingly common to observe excessively fast grape sugar accumulation while phenolic and flavour development are lagging behind. The aim of this research was to quantify the impacts of three different leaf removal techniques on [...] Read more.
Under the effects of climate change, it is becoming increasingly common to observe excessively fast grape sugar accumulation while phenolic and flavour development are lagging behind. The aim of this research was to quantify the impacts of three different leaf removal techniques on the canopy architecture and ripening of Cabernet Sauvignon trained in a sprawl trellis system. Treatments were performed at veraison (~14 °Brix) and included (i) control; (ii) leaf plucking in the bunch zone; (iii) leaf plucking the top two-thirds of shoots, apical to the bunches; and (iv) shoot trimming. On the date of harvest, no significant difference in total soluble solids was observed between treatments. Other results including the effect of the treatments on fruit acidity, anthocyanins, phenolics, and tannins were somewhat inconclusive. While various other studies have shown the potential of leaf removal to achieve slower grape sugar accumulation without affecting the concentration of anthocyanins, phenolics, and tannins, the results of this study do not indicate a decrease in the rate of grape sugar accumulation as a result of the investigated defoliation techniques. Given the cost of implementing these treatments, the results of this study do not support the use of these methods for the purpose of delaying fruit ripening in a hot Australian climate. Full article
Show Figures

Figure 1

Back to TopTop