Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = aphthovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6373 KB  
Review
The Current Epizootiological Situation of Three Major Viral Infections Affecting Cattle in Egypt
by Sherin R. Rouby, Ahmed H. Ghonaim, Xingxiang Chen and Wentao Li
Viruses 2024, 16(10), 1536; https://doi.org/10.3390/v16101536 - 28 Sep 2024
Cited by 3 | Viewed by 5446
Abstract
One of the major factors hindering efficient livestock production is the presence of high-impact infectious animal diseases, such as foot and mouth disease (FMD), lumpy skin disease (LSD), and bovine ephemeral fever (BEF), which are notable viral infections affecting cattle in Egypt, leading [...] Read more.
One of the major factors hindering efficient livestock production is the presence of high-impact infectious animal diseases, such as foot and mouth disease (FMD), lumpy skin disease (LSD), and bovine ephemeral fever (BEF), which are notable viral infections affecting cattle in Egypt, leading to significant economic losses. FMD is caused by the foot and mouth disease virus (FMDV) of the genus Aphthovirus in the Picornaviridae family. LSD is caused by lumpy skin disease virus (LSDV) of Capripox genus within the Poxviridae family, subfamily Chordopoxvirinae. BEF is caused by bovine ephemeral fever virus (BEFV) of genus Ephemerovirus in the Rhabdoviridae family. FMD is a highly contagious viral infection of domestic and wild cloven-hooved animals and can spread through the wind. On the other hand, LSD and BEF are arthropod-borne viral diseases that mainly affect domestic cattle and water buffalo. Despite government vaccination efforts, these three viral diseases have become widespread in Egypt, with several reported epidemics. Egypt’s importation of large numbers of animals from different countries, combined with unregulated animal movements through trading and borders between African countries and Egypt, facilitates the introduction of new FMDV serotypes and lineages not covered by the current vaccination plans. To establish an effective control program, countries need to assess the real epizootic situation of various infectious animal diseases to develop an efficient early warning system. This review provides information about FMD, LSD, and BEF, including their economic impacts, causative viruses, global burden, the situation in Egypt, and the challenges in controlling these diseases. Full article
(This article belongs to the Special Issue Advances in Endemic and Emerging Viral Diseases in Livestock)
Show Figures

Graphical abstract

8 pages, 3006 KB  
Communication
Bovine Rhinitis B Virus Variant as the Putative Cause of Bronchitis in Goat Kids
by Andrew Noel, Jianqiang Zhang, Huigang Shen, Anugrah Saxena, Jennifer Groeltz-Thrush, Ganwu Li and Michael C. Rahe
Viruses 2024, 16(7), 1023; https://doi.org/10.3390/v16071023 - 25 Jun 2024
Viewed by 1770
Abstract
A diagnostic investigation into an outbreak of fatal respiratory disease among young goats in Iowa, USA revealed bronchitis lesions of unknown etiology and secondary bacterial bronchopneumonia. Hypothesis-free metagenomics identified a previously unreported picornavirus (USA/IA26017/2023), and further phylogenetic analysis classified USA/IA26017/2023 as an aphthovirus [...] Read more.
A diagnostic investigation into an outbreak of fatal respiratory disease among young goats in Iowa, USA revealed bronchitis lesions of unknown etiology and secondary bacterial bronchopneumonia. Hypothesis-free metagenomics identified a previously unreported picornavirus (USA/IA26017/2023), and further phylogenetic analysis classified USA/IA26017/2023 as an aphthovirus related to bovine rhinitis B virus. Viral nucleic acid was localized to lesions of bronchitis using in situ hybridization. This marks the first report of a picornavirus putatively causing respiratory disease in goats and highlights the potential for cross-species transmission of aphthoviruses. Full article
(This article belongs to the Special Issue Animal Virus Discovery and Genetic Diversity)
Show Figures

Figure 1

20 pages, 4546 KB  
Article
Foot-and-Mouth Disease Virus Interserotypic Recombination in Superinfected Carrier Cattle
by Ian Fish, Carolina Stenfeldt, Edward Spinard, Gisselle N. Medina, Paul A. Azzinaro, Miranda R. Bertram, Lauren Holinka, George R. Smoliga, Ethan J. Hartwig, Teresa de los Santos and Jonathan Arzt
Pathogens 2022, 11(6), 644; https://doi.org/10.3390/pathogens11060644 - 3 Jun 2022
Cited by 19 | Viewed by 4405
Abstract
Viral recombination contributes to the emergence of novel strains with the potential for altered host range, transmissibility, virulence, and immune evasion. For foot-and-mouth disease virus (FMDV), cell culture experiments and phylogenetic analyses of field samples have demonstrated the occurrence of recombination. However, the [...] Read more.
Viral recombination contributes to the emergence of novel strains with the potential for altered host range, transmissibility, virulence, and immune evasion. For foot-and-mouth disease virus (FMDV), cell culture experiments and phylogenetic analyses of field samples have demonstrated the occurrence of recombination. However, the frequency of recombination and associated virus–host interactions within an infected host have not been determined. We have previously reported the detection of interserotypic recombinant FMDVs in oropharyngeal fluid (OPF) samples of 42% (5/12) of heterologously superinfected FMDV carrier cattle. The present investigation consists of a detailed analysis of the virus populations in these samples including identification and characterization of additional interserotypic minority recombinants. In every animal in which recombination was detected, recombinant viruses were identified in the OPF at the earliest sampling point after superinfection. Some recombinants remained dominant until the end of the experiment, whereas others were outcompeted by parental strains. Genomic analysis of detected recombinants suggests host immune pressure as a major driver of recombinant emergence as all recombinants had capsid-coding regions derived from the superinfecting virus to which the animals did not have detectable antibodies at the time of infection. In vitro analysis of a plaque-purified recombinant virus demonstrated a growth rate comparable to its parental precursors, and measurement of its specific infectivity suggested that the recombinant virus incurred no penalty in packaging its new chimeric genome. These findings have important implications for the potential role of persistently infected carriers in FMDV ecology and the emergence of novel strains. Full article
(This article belongs to the Special Issue Foot-and-Mouth Disease Virus: Pathogenesis and Persistence)
Show Figures

Figure 1

19 pages, 2806 KB  
Review
A Comprehensive Review of the Immunological Response against Foot-and-Mouth Disease Virus Infection and Its Evasion Mechanisms
by Ibett Rodríguez-Habibe, Carmen Celis-Giraldo, Manuel Elkin Patarroyo, Catalina Avendaño and Manuel Alfonso Patarroyo
Vaccines 2020, 8(4), 764; https://doi.org/10.3390/vaccines8040764 - 14 Dec 2020
Cited by 26 | Viewed by 6789
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease, which has been reported for over 100 years, and against which the struggle has lasted for the same amount of time. It affects individuals from the order Artiodactyla, such as cattle, swine, sheep, wild [...] Read more.
Foot-and-mouth disease (FMD) is a highly contagious viral disease, which has been reported for over 100 years, and against which the struggle has lasted for the same amount of time. It affects individuals from the order Artiodactyla, such as cattle, swine, sheep, wild animals from this order, and a few non-cloven hoofed species, such as mice and elephants. FMD causes large-scale economic losses for agricultural production systems; morbidity is almost 100% in an affected population, accompanied by a high mortality rate in young animals due to myocarditis or an inability to suckle if a mother is ill. The aetiological agent is an Aphthovirus from the family Picornaviridae, having seven serotypes: A, O, C, SAT1, SAT2, SAT3, and Asia 1. Serotype variability means that an immune response is serospecific and vaccines are thus designed to protect against each serotype independently. A host’s adaptive immune response is key in defence against pathogens; however, this virus uses successful strategies (along with most microorganisms) enabling it to evade a host’s immune system to rapidly and efficiently establish itself within such host, and thus remain there. This review has been aimed at an in-depth analysis of the immune response in cattle and swine regarding FMD virus, the possible evasion mechanisms used by the virus and describing some immunological differences regarding these species. Such aspects can provide pertinent knowledge for developing new FMD control and prevention strategies. Full article
Show Figures

Figure 1

21 pages, 3557 KB  
Article
Into the Deep (Sequence) of the Foot-and-Mouth Disease Virus Gene Pool: Bottlenecks and Adaptation during Infection in Naïve and Vaccinated Cattle
by Ian Fish, Carolina Stenfeldt, Rachel M. Palinski, Steven J. Pauszek and Jonathan Arzt
Pathogens 2020, 9(3), 208; https://doi.org/10.3390/pathogens9030208 - 12 Mar 2020
Cited by 13 | Viewed by 4956
Abstract
Foot-and-mouth disease virus (FMDV) infects hosts as a population of closely related viruses referred to as a quasispecies. The behavior of this quasispecies has not been described in detail in natural host species. In this study, virus samples collected from vaccinated and non-vaccinated [...] Read more.
Foot-and-mouth disease virus (FMDV) infects hosts as a population of closely related viruses referred to as a quasispecies. The behavior of this quasispecies has not been described in detail in natural host species. In this study, virus samples collected from vaccinated and non-vaccinated cattle up to 35 days post-experimental infection with FMDV A24-Cruzeiro were analyzed by deep-sequencing. Vaccination induced significant differences compared to viruses from non-vaccinated cattle in substitution rates, entropy, and evidence for adaptation. Genomic variation detected during early infection reflected the diversity inherited from the source virus (inoculum), whereas by 12 days post infection, dominant viruses were defined by newly acquired mutations. Mutations conferring recognized fitness gain occurred and were associated with selective sweeps. Persistent infections always included multiple FMDV subpopulations, suggesting distinct foci of infection within the nasopharyngeal mucosa. Subclinical infection in vaccinated cattle included very early bottlenecks associated with reduced diversity within virus populations. Viruses from both animal cohorts contained putative antigenic escape mutations. However, these mutations occurred during later stages of infection, at which time transmission is less likely to occur. This study improves upon previously published work by analyzing deep sequences of samples, allowing for detailed characterization of FMDV populations over time within multiple hosts. Full article
Show Figures

Graphical abstract

16 pages, 1437 KB  
Article
Homology Modeling and Analysis of Structure Predictions of the Bovine Rhinitis B Virus RNA Dependent RNA Polymerase (RdRp)
by Devendra K. Rai and Elizabeth Rieder
Int. J. Mol. Sci. 2012, 13(7), 8998-9013; https://doi.org/10.3390/ijms13078998 - 19 Jul 2012
Cited by 19 | Viewed by 9460
Abstract
Bovine Rhinitis B Virus (BRBV) is a picornavirus responsible for mild respiratory infection of cattle. It is probably the least characterized among the aphthoviruses. BRBV is the closest relative known to Foot and Mouth Disease virus (FMDV) with a ~43% identical polyprotein sequence [...] Read more.
Bovine Rhinitis B Virus (BRBV) is a picornavirus responsible for mild respiratory infection of cattle. It is probably the least characterized among the aphthoviruses. BRBV is the closest relative known to Foot and Mouth Disease virus (FMDV) with a ~43% identical polyprotein sequence and as much as 67% identical sequence for the RNA dependent RNA polymerase (RdRp), which is also known as 3D polymerase (3Dpol). In the present study we carried out phylogenetic analysis, structure based sequence alignment and prediction of three-dimensional structure of BRBV 3Dpol using a combination of different computational tools. Model structures of BRBV 3Dpol were verified for their stereochemical quality and accuracy. The BRBV 3Dpol structure predicted by SWISS-MODEL exhibited highest scores in terms of stereochemical quality and accuracy, which were in the range of 2Å resolution crystal structures. The active site, nucleic acid binding site and overall structure were observed to be in agreement with the crystal structure of unliganded as well as template/primer (T/P), nucleotide tri-phosphate (NTP) and pyrophosphate (PPi) bound FMDV 3Dpol (PDB, 1U09 and 2E9Z). The closest proximity of BRBV and FMDV 3Dpol as compared to human rhinovirus type 16 (HRV-16) and rabbit hemorrhagic disease virus (RHDV) 3Dpols is also substantiated by phylogeny analysis and root-mean square deviation (RMSD) between C-α traces of the polymerase structures. The absence of positively charged α-helix at C terminal, significant differences in non-covalent interactions especially salt bridges and CH-pi interactions around T/P channel of BRBV 3Dpol compared to FMDV 3Dpol, indicate that despite a very high homology to FMDV 3Dpol, BRBV 3Dpol may adopt a different mechanism for handling its substrates and adapting to physiological requirements. Our findings will be valuable in the design of structure-function interventions and identification of molecular targets for drug design applicable to Aphthovirus RdRps. Full article
(This article belongs to the Special Issue Advances in Biomolecular Simulation)
Show Figures

Back to TopTop