Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = apatite-wollastonite glass ceramic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 8872 KiB  
Article
An Investigation of In Vitro Bioactivities and Cytotoxicities of Spray Pyrolyzed Apatite Wollastonite Glass-Ceramics
by Andualem Belachew Workie, Henni Setia Ningsih, Wen-Ling Yeh and Shao-Ju Shih
Crystals 2023, 13(7), 1049; https://doi.org/10.3390/cryst13071049 - 2 Jul 2023
Cited by 4 | Viewed by 2034
Abstract
An apatite-wollastonite glass ceramic (AWGC) has been recognized as one of the popular bioactive materials due to its good osteoconductivity and high mechanical properties in the field of tissue engineering. Various processes have been developed to fabricate AWGCs. Among them, the sol-gel process [...] Read more.
An apatite-wollastonite glass ceramic (AWGC) has been recognized as one of the popular bioactive materials due to its good osteoconductivity and high mechanical properties in the field of tissue engineering. Various processes have been developed to fabricate AWGCs. Among them, the sol-gel process is one of the most popular processes. However, sol-gel has the drawbacks of discontinuous processing and long processing time, making it unsuitable for mass production. This study demonstrates a successful synthesis of AWGCs using a spray pyrolysis method to overcome these drawbacks, and the prepared pellets were sintered at temperatures of 700, 800, 900, 1000, and 1100 °C for four hours. In addition, X-ray diffraction, scanning electron microscopy, and X-ray energy-dispersive spectroscopy were used to obtain the phase composition, morphology, and chemical information of AWGCs. For bioactive measurements, among these AWGC samples, the 1100 °C sintered sample reveals the highest bioactivity. The MTT result indicates that all AWGCs are not non-toxic to the MC3T3-E1 cells and increase the growth rate of MC3T3-E1 cells. Full article
(This article belongs to the Special Issue Advances in New Functional Biomaterials for Medical Applications)
Show Figures

Figure 1

19 pages, 11062 KiB  
Article
The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics
by Amanda De Castro Juraski, Andrea Cecilia Dorion Rodas, Hamada Elsayed, Enrico Bernardo, Viviane Oliveira Soares and Juliana Daguano
Materials 2017, 10(4), 425; https://doi.org/10.3390/ma10040425 - 18 Apr 2017
Cited by 23 | Viewed by 7735
Abstract
Ca-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD) glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich [...] Read more.
Ca-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD) glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich glass. The in vitro degradation, bioactivity, and cell response of these new WD glass-ceramics, fired at 900–1100 °C for 1 h, as a function of the Ca/Mg-rich glass content, are the aim of this investigation The results showed that WD glass-ceramics from formulations comprising different glass contents (70–100% at 900 °C, 30% at 1100 °C) exhibit the formation of an apatite-like layer on their surface after immersion in SBF for seven days, thus confirming their surface bioactivity. The XRD results showed that these samples crystallized, mainly forming wollastonite (CaSiO3) and diopside (CaMgSi2O6), but combeite (Na2Ca2Si3O9) crystalline phase was also detected. Besides in vitro bioactivity, cytotoxicity and osteoblast adhesion and proliferation tests were applied after all characterizations, and the formulation comprising 70% glass was demonstrated to be promising for further in vivo studies. Full article
(This article belongs to the Special Issue Bioceramics 2016)
Show Figures

Figure 1

Back to TopTop