Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = antiendotoxic activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6544 KB  
Review
Host Defense Proteins and Peptides with Lipopolysaccharide-Binding Activity from Marine Invertebrates and Their Therapeutic Potential in Gram-Negative Sepsis
by Tamara Fedorovna Solov’eva, Svetlana Ivanovna Bakholdina and Gennadii Alexandrovich Naberezhnykh
Mar. Drugs 2023, 21(11), 581; https://doi.org/10.3390/md21110581 - 7 Nov 2023
Cited by 7 | Viewed by 4512
Abstract
Sepsis is a life-threatening complication of an infectious process that results from the excessive and uncontrolled activation of the host’s pro-inflammatory immune response to a pathogen. Lipopolysaccharide (LPS), also known as endotoxin, which is a major component of Gram-negative bacteria’s outer membrane, plays [...] Read more.
Sepsis is a life-threatening complication of an infectious process that results from the excessive and uncontrolled activation of the host’s pro-inflammatory immune response to a pathogen. Lipopolysaccharide (LPS), also known as endotoxin, which is a major component of Gram-negative bacteria’s outer membrane, plays a key role in the development of Gram-negative sepsis and septic shock in humans. To date, no specific and effective drug against sepsis has been developed. This review summarizes data on LPS-binding proteins from marine invertebrates (ILBPs) that inhibit LPS toxic effects and are of interest as potential drugs for sepsis treatment. The structure, physicochemical properties, antimicrobial, and LPS-binding/neutralizing activity of these proteins and their synthetic analogs are considered in detail. Problems that arise during clinical trials of potential anti-endotoxic drugs are discussed. Full article
Show Figures

Graphical abstract

18 pages, 760 KB  
Review
Recent Advances in Antibacterial and Antiendotoxic Peptides or Proteins from Marine Resources
by Zhenlong Wang, Xiumin Wang and Jianhua Wang
Mar. Drugs 2018, 16(2), 57; https://doi.org/10.3390/md16020057 - 10 Feb 2018
Cited by 24 | Viewed by 6538
Abstract
Infectious diseases caused by Gram-negative bacteria and sepsis induced by lipopolysaccharide (LPS) pose a major threat to humans and animals and cause millions of deaths each year. Marine organisms are a valuable resource library of bioactive products with huge medicinal potential. Among them, [...] Read more.
Infectious diseases caused by Gram-negative bacteria and sepsis induced by lipopolysaccharide (LPS) pose a major threat to humans and animals and cause millions of deaths each year. Marine organisms are a valuable resource library of bioactive products with huge medicinal potential. Among them, antibacterial and antiendotoxic peptides or proteins, which are composed of metabolically tolerable residues, are present in many marine species, including marine vertebrates, invertebrates and microorganisms. A lot of studies have reported that these marine peptides and proteins or their derivatives exhibit potent antibacterial activity and antiendotoxic activity in vitro and in vivo. However, their categories, heterologous expression in microorganisms, physicochemical factors affecting peptide or protein interactions with bacterial LPS and LPS-neutralizing mechanism are not well known. In this review, we highlight the characteristics and anti-infective activity of bifunctional peptides or proteins from marine resources as well as the challenges and strategies for further study. Full article
(This article belongs to the Special Issue Marine Antimicrobial Agents)
Show Figures

Figure 1

20 pages, 681 KB  
Article
β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure
by Harini Mohanram and Surajit Bhattacharjya
Pharmaceuticals 2014, 7(4), 482-501; https://doi.org/10.3390/ph7040482 - 21 Apr 2014
Cited by 22 | Viewed by 8692
Abstract
Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane [...] Read more.
Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules. Full article
Show Figures

Figure 1

Back to TopTop