Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = anticontrol of chaos

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1434 KiB  
Article
Chaos Anticontrol and Switching Frequency Impact on MOSFET Junction Temperature and Lifetime
by Cristina Morel and Jean-Yves Morel
Actuators 2025, 14(5), 203; https://doi.org/10.3390/act14050203 - 23 Apr 2025
Viewed by 597
Abstract
Generating chaos from originally non-chaotic systems is a promising issue. Indeed, chaos has been successfully applied in many fields to improve system performance. In this work, a Buck converter is chaotified using a combination of the switching piecewise-constant characteristic and of anticontrol of [...] Read more.
Generating chaos from originally non-chaotic systems is a promising issue. Indeed, chaos has been successfully applied in many fields to improve system performance. In this work, a Buck converter is chaotified using a combination of the switching piecewise-constant characteristic and of anticontrol of chaos feedback. For electromagnetic compatibility compliance reasons, this feedback control method is able, at the same time, to achieve low spectral emissions and to maintain a small ripple of the output voltage and the inductance current. This new feedback implies a fast and non-linear switching action of the Buck MOSFET on a period of the ramp generator. Thus, it is essential to analyze its thermal performance. This is why we propose an original analysis of the influence of anticontrol of chaos and switching frequency variation on junction temperature: we investigate the correlation between the lifetime of the power electronic switching component and its thermal stress due to the addition of chaos. It appeared that a reduction in the current ripple did not degrade the MOSFET junction thermal performance, despite the fast switching of the MOSFET. Furthermore, a small degradation in the MOSFET lifetime was indicated for chaotic behavior versus periodic behavior. Thus, this leads to the conclusion that using anticontrol of chaos produces a low accumulated fatigue effect on a Buck converter semiconductor. Full article
Show Figures

Figure 1

14 pages, 3179 KiB  
Article
Constructing a New Multi-Scroll Chaotic System and Its Circuit Design
by Yinfang Ye and Jianbin He
Mathematics 2024, 12(13), 1931; https://doi.org/10.3390/math12131931 - 21 Jun 2024
Cited by 6 | Viewed by 1466
Abstract
Multi-scroll chaotic systems have complex dynamic behaviors, and the multi-scroll chaotic system design and analysis of their dynamic characteristics is an open research issue. This study explores a new multi-scroll chaotic system derived from an asymptotically stable linear system and designed with a [...] Read more.
Multi-scroll chaotic systems have complex dynamic behaviors, and the multi-scroll chaotic system design and analysis of their dynamic characteristics is an open research issue. This study explores a new multi-scroll chaotic system derived from an asymptotically stable linear system and designed with a uniformly bounded controller. The main contributions of this paper are given as follows: (1) The controlled system can cause chaotic behavior with an appropriate control position and parameters values, and a new multi-scroll chaotic system is proposed using a bounded sine function controller. Meanwhile, the dynamical characteristics of the controlled system are analyzed through the stability of the equilibrium point, a bifurcation diagram, and Lyapunov exponent spectrum. (2) According to the Poincaré section, the existence of a topological horseshoe is proven using the rigorous computer-aided proof in the controlled system. (3) Numerical results of the multi-scroll chaotic system are shown using Matlab R2020b, and the circuit design is also given to verify the multi-scroll chaotic attractors. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

13 pages, 6971 KiB  
Article
Chaos Control and Anti-Control of the Heterogeneous Cournot Oligopoly Model
by Marek Lampart and Alžběta Lampartová
Mathematics 2020, 8(10), 1670; https://doi.org/10.3390/math8101670 - 28 Sep 2020
Cited by 10 | Viewed by 3063
Abstract
The main aim of this paper focuses on chaos suppression (control) and stimulation (anti-control) of a heterogeneous Cournot oligopoly model. This goal is reached by applying the theory of dynamical systems, namely impulsive control. The main aim was to demonstrate, through massive numerical [...] Read more.
The main aim of this paper focuses on chaos suppression (control) and stimulation (anti-control) of a heterogeneous Cournot oligopoly model. This goal is reached by applying the theory of dynamical systems, namely impulsive control. The main aim was to demonstrate, through massive numerical simulations and estimation of the maximal Lyapunov exponent, the 0-1test for chaos, and bifurcation analysis, that it is possible to control the dynamical behavior of the investigated model by finding injection values under which the desired phenomena are attained. Moreover, it was shown that there are injection values for which the injected system admits a self-excited cycle or chaotic trajectory. Full article
(This article belongs to the Special Issue Mathematical Methods on Economic Dynamics)
Show Figures

Figure 1

Back to TopTop