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Abstract: The main aim of this paper focuses on chaos suppression (control) and stimulation
(anti-control) of a heterogeneous Cournot oligopoly model. This goal is reached by applying the
theory of dynamical systems, namely impulsive control. The main aim was to demonstrate, through
massive numerical simulations and estimation of the maximal Lyapunov exponent, the 0-1test for
chaos, and bifurcation analysis, that it is possible to control the dynamical behavior of the investigated
model by finding injection values under which the desired phenomena are attained. Moreover, it was
shown that there are injection values for which the injected system admits a self-excited cycle or
chaotic trajectory.

Keywords: heterogeneous Cournot oligopoly model; 0-1 test for chaos; Lyapunov exponent;
bifurcation; chaos control; chaos anti-control

1. Introduction

Not only chaosbut also other types of movement patterns (like period and quasiperiod) that come
from experimental data and those generated by simulations of a given model reflect phenomena in
mathematics and the sciences (including economics) (for motivation, see, e.g., Reference [1,2]).

Since it seems that chaos is something undesirable, one can try to avoid or prevent it [3].
Conversely, there are numerous situations where having random-looking and irregular patterns
is in fact desirable, e.g., the record of EEG. So, it depends on the specific situation whether chaos is
desirable or undesirable.

Therefore, many scientists have applied chaos control theory in the hope of achieving suppression
(called chaos control) and stimulation (chaos anti-control) for improvement of performance and
preservation of stability, which would lead to improved economic efficiency of market models.

Economic dynamics has not been investigated for a long time because of the high mathematical
computational requirements. With the recent development of computers, especially ready-made
software packages, and the development of mathematical theory, economists can now fairly easily
handle complex dynamical systems [4].

For investigative purposes, new methods for controlling the dynamical properties of the impulsive
method of dynamical systems theory are used. This changes the systems variable in the form of
instantaneous pulses periodically occurring [5,6].

The focus of this paper is on chaos control and anti-control of the heterogeneous Cournot
oligopoly model introduced in Reference [7] by investigation of impulsive control (the theory of
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imperfect competition à la Cournot has been deeply researched for more than the past century (see,
e.g., Reference [8–11]), and influence of demand type functions have been considered: linear in
Reference [12], piecewise linear in Reference [11], for duopoly, iso-elastic in Reference [13], for triopoly
and other, more sophisticated, types in Reference [14,15]). For this purpose, the impulsed dynamical
system is introduced. For chaos and regularity determination, the 0-1 test for chaos, the maximal
Lyapunov exponent, and the Power Spectrum Density (PSD) [16] are used, supported by time histories
of trajectories, bifurcation diagrams, and basins of attractions.

Using the after-going technique in Equation (2) and application of the previously mentioned
methods, it will be shown that there are impulse values for which the impulsed system Equation (11)
admits a self-excited cycle or chaotic trajectory (Property 1 and 2). This demonstrates the effectivity of
the selected method of chaos suppression and stimulation with its practical importance.

The paper starts with an introduction to the topic in Section 1, followed by the impulsive control
system declaration in Section 2, and continuing with the main results in Sections 3 and 4, where firstly
chaos control is researched and secondly chaos anti-control is observed. In the following Section 5, the
results of the previous two sections are compared. Next, in Section 6, some alternative approaches
to the investigation of impulse control are given to show different possibilities of chaos control and
anti-control of the researched system. The paper closes with concluding notes in the last part, Section 7.

2. The Impulsive Control System

Let (X, F) be a discrete dynamical system; usually X is assumed to be a compact metric space and
F : X → X continuous onto (not necessarily into) map. Without loss of generality, we can assume that
the dimension of X equals k and the dynamics of (X, F) is given by the difference equation

xn+1 = F(xn), (1)

with xn ∈ X for any n ∈ N, and the underlying initial condition x(1) = x1.
Following the ideas of Reference [17] (see also references therein), the next impulsive difference

equation can be defined for dynamics control of the original difference Equation (1):

xn+1 =

{
F(xn) if n ∈ N \ {ni}i∈N,

xn + δ if n = ni
, (2)

where {ni} ∈ N and ni = i∆ = ∆, 2∆, 3∆, . . . is an increasing sequence of natural numbers, ∆ ∈ N is
the step size, and δ ∈ R is the constant injection quantity applied at every ni step. Note that the above
(impulse) difference equation is introduced in a “symmetric” way, meaning that the same valued
injection δ is applied at every ni step to every variable.

Hence, the impulsed dynamical system can be classified using

F(x) = f ∆(x) + y, (3)

since
xn = f n−1−b n−1

∆ c∆
(

Fb
n−1

∆ c(x1)
)
, n ∈ N, (4)

where b·c is the floor function, and f ∆ stands for ∆-th iteration of f , that is

f ∆ = f ◦ · · · ◦ f .︸ ︷︷ ︸
∆−times

. (5)

Using Equation (4), one can easily derive

xi∆+1 = Fi(x1), i ∈ N, (6)

from which it follows that any p-cycle of F generates a ∆p-cycle of Equation (2).
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Now, consider the heterogeneous Cournot oligopoly model (HCOM) introduced in Reference [7] (also
see Reference [18]), where it is considered a set of identical quantity setting agents N = {1, 2, . . . , N}
that compete in the same market for a homogeneous good, in which demand is summarized by a
linear inverse-demand function P(Q) = max{a− bQ, 0}, a and b being its scalar parameters. Let us
denote by qn

i the quantity of goods that is a generic i-th agent, with i ∈ N , selling in the market at
time-period n. All the agents bear the same constant marginal production cost c, so that the generic
i-th agent earns the profit

πi = P(Q)qi − cqi. (7)

The oligopoly, in this case, is characterized by introducing heterogeneous decision mechanisms,
used to decide what quantity of goods to produce by considering a population structured into
two groups of agents of different kinds. The first group, denoted by q1, includes boundedly rational
players that use the gradient rule first proposed in Reference [19] and are hence called the gradient
players group; q2 includes agents that adopt an imitation-based decision mechanism and are called
imitator players.

The collective behavior of the whole heterogeneous population of N players is described by the
following 2-dimensional non-linear discrete dynamical system:

HCOM :


qn+1

1 = qn
1 + γqn

1 (a− b((N(1−ω) + 1)qn
1 + ωNqn

2 )− c),

qn+1
2 =

πn
2

πn
2 + πn

1
qn

2 +
πn

1
πn

2 + πn
1

qn
1 ,

(8)

where

πn
1 = (a− c− bN((1−ω)qn

1 + ωqn
2 ))q

n
1 , (9)

πn
2 = (a− c− bN((1−ω)qn

1 + ωqn
2 ))q

n
2 . (10)

The system Equation (8) has two stationary states. The first one (non-zero if a 6= c) takes the form
EN = (qN , qN), where

qN =
a− c

b(N + 1)
,

and the second one is located on the positive part of the horizontal axis, that is, L = (0, y), where
y > 0. Their stability is:

Proposition 1 (Reference [7]).

(i) The equilibrium (qN , qN) is locally asymptotically stable if

ω ∈ (ω f , ωns),

where

ω f =
3
2

N + 1
N

(
1
2
− 1

γ(a− c)

)
and

ωns =
1
2

N + 1
N

(
1

γ(a− c)
+ 1
)

.

(ii) The equilibrium L = (0, y) is (hyperbolic) stable if

y >
a− c
bωN

.
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Deep analysis of the dynamic properties of the HCOM Equation (8) model was performed in
Reference [20] through the investigation of hidden-attractors and multistability.

Finally, by applying impulsive control Equation (2), HCOM Equation (8) becomes an injected
heterogeneous Cournot oligopoly model (IHCOM):

IHCOM : (qn+1
1 , qn+1

2 ) =

{
F(qn

1 , qn
2 ), if n ∈ N \ {ni}i∈N,

F(qn
1 , qn

2 ) + (δ, δ), if n = ni,
(11)

with

F(qn
1 , qn

2 ) = (F1(qn
1 , qn

2 ), F2(qn
1 , qn

2 )), (12)

where

F1(qn
1 , qn

2 ) = qn
1 + γqn

1 (a− b((N(1−ω) + 1)qn
1 + ωNqn

2 )− c), (13)

F2(qn
1 , qn

2 ) =
(qn

1 )
2 + (qn

2 )
2

qn
1 + qn

2
. (14)

In the following, all simulations were performed with the initial condition located close to
the EN stationary point: (q1(1), q2(1)) = (qN + 0.25, qN) = (1.75, 1.5), and trajectories up to
3× 103 were evaluated (K, L, bifurcation diagrams, and PSD), while 20% were skipped to omit
the system’s distortions.

For the further investigation, the system’s IHCOM Equation (11) parameters were set as in
Reference [7], summarized in Table 1. The parameter γ varies from 0.35 to 0.525 to show the original
system’s HCOM dynamics. Bifurcations with outputs of the 0-1 test for chaos K (see Reference [21–25])
and maximal Lyapunov exponent L, are given in Figure 1. Hereafter, for the sake of simplicity, we
analyze only the first variable q1 since variables q1 and q2 are joined together by the way they are
defined. If ω is a variable parameter, one can easily compare K, L, and bifurcation diagrams of q1 and
q2 varying ω for γ0 = 0.48 (Figure 2a) and γ0 = 0.5244 (Figure 2b). Their dynamics are identical on q1

and q2 (Figure 2a1 with Figure 2a2 and Figure 2b1 with Figure 2b2, respectively) for both parameters
of γ0,1. It is worth noting that ω ∈ [0, 1], while the results in Figure 2 concentrate on the interval
(0.34, 0.76) or (0.399, 0.755) for γ0 = 0.48 or γ1 = 0.5224, respectively, since the complement cases
are those for which the system HCOM Equation (8) diverges. Consequently, two values, γ0 = 0.48
and γ1 = 0.5224, are pointed out. HCOM admits a periodic structure for γ0 and chaos for γ1 for the
parameters given in Table 1. These two values are picked as starting to control and anti-control the
chaos (Sections 3 and 4).

Figure 1. Heterogeneous Cournot oligopoly model (HCOM) Equation (8) system’s (upper) BDγ and
(lower) K, L for q1 variable.
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Table 1. Parameters of HCOM Equation (2) and injected HCOM (IHCOM) Equation (11).

a b c N ω

10 1 1 5 0.4

(a1) (b1)

(a2) (b2)

Figure 2. HCOM Equation (8) system’s BDω , K, and L of q1 (a1,b1) and q2 (a2,b2), for γ0 = 0.48 (a1,a2),
and γ1 = 0.5244 (b1,b2).

3. Chaos Control

In this section, the impulsed system IHCOM Equation (11) is investigated for ∆ = 1 (i.e., ni = i
for i = 1, 2, 3, . . . , that is, the impulse δ is applied at each step) and γ = 0.5244 corresponding to
chaotic behavior (Figure 1) of the original HCOM Equation (8). Hence, the task is to suppress chaotic
behaviour of the original HCOM Equation (8) model.

The exploration was done using a bifurcation diagram of the variable q1 versus the impulse δ

(for brevity, DBα stands for bifurcation diagram varying α). The bifurcation analysis is supported by
outputs of K and L, computed by the algorithm introduced in Reference [26]. The 0-1 test for chaos,
initially designed for testing for the existence of chaos, and later for identifying strange non-chaotic
attractors (see, e.g., Reference [17]), returns binary output: values close to 0 which indicate regularity,
and values close to 1 which indicate the presence of chaos. This test is applicable to continuous [27]
and also to discrete dynamical systems [28], as well as to real data [29].

As Figure 3 reveals, there exist periodic windows among chaotic windows, indicating the
possibility to choose impulses δ for which the IHCOM Equation (11) evolves along some stable
cycle. That is visible from bifurcation diagram in Figure 3a-upper and its magnified part in Figure 3d.

In particular, the two parameters δ0 = 0.1634 and δ1 = 0.308 are highlighted. In both cases, they
correspond to stable cycles δ0, which generates a period–8 stable cycle (highlighted by the red mark),
and δ1, which generates a 5–period stable cycle (highlighted by the red mark).
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Property 1. For IHCOM Equation (8) with ∆ = 1 and γ = 0.5244:

(i) there is at least one δ ∈ [0, 0.442] such that IHCOM Equation (11) admits a self-excited cycle,
(ii) there is at least one δ ∈ [0, 0.442] such that IHCOM Equation (11) admits chaotic trajectories.

The proof of Property 1 is given by computer graphics analysis studying the basin of attractions
and behavior of trajectories of perturbed equilibria as the initial point. Dynamics quantifiers, such as
the 0-1 test for chaos, and maximal Lyapunov exponent were applied; see Figure 3a-lower.

(a)
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2

(b)
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0.8
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1.6

1.8

(c) (d)

Figure 3. Investigated IHCOM Equation (11) with ∆ = 1 and γ = 0.5244: (a-upper) BDδ,
(a-lower) chaos characteristics K and L for q1 variable, (b) time history for δ0 = 0.1634 (8 stable
cycle highlighted by the red mark), (c) time history for δ1 = 0.308 (5 stable cycle highlighted by the
red mark), and (d) is magnified part of (a).

The motion of both variables q1 and q2 allows the observation of the full variety of the dynamics
character. That is, for a suitable value of δ, one can observe period in Figure 4a1–a3, chaos in
Figure 4c1–c3, and also quasiperiod in Figure 4b1–b3. Time histories (Figure 4a1,b1,c1) and PSD
(Figure 4a2,b2,c2) are shown together with aggregated density plots for all three cases with a congruent
color scheme. The quasiperiodic pattern is clearly visible in Figure 4d, where the numerous full portions
(blue marks) indicate that the entire orbit closes and does not repeats itself. The quasiperiodicity is also
revealed by the PSD in Figure 4b2, which clearly shows that the periodic orbit in Figure 4a1 presents
the first fundamental frequency α0 and the harmonic α1 = α0 + β0. For Figure 4b2, as a consequence
of Neimark-Sacker bifurcation, which generally generates quasiperiodicity, a new set of subharmonics
are created, e.g., α01, close to the first frequencies α0 and α1, at small distance β01.

Finally, Figure 4a3,b3,c3 show boundedness or unboundedness of translation variables in the p− q
plane of the 0-1 test for chaos, detecting the regularity or irregularity, respectively, of the movement
character. Outputs of Figure 4, together with parameters, are aggregated in Table 2.
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Figure 4. IHCOM Equation (11) with ∆ = 1: time histories ((a1),(b1),(c1)), PSD ((a2),(b2),(c2)),
and translation variables plot in p− q plane ((a3),(b3),(c3)) for periodic (a), quasiperiodic (b), chaotic
(c) movement for parameters δ given in Table 2; (d) aggregated density plots for all three cases with
color inherited.

Table 2. Summarized parameters and outputs of Figure 4.

Movement Type δ K L Figure 4 Color Marker

periodic 0.426 −0.0025 −0.00625 (a1)–(a2) red
quasiperiodic 0.4134151 0.0086 0.0034 (b1)–(b2) blue

chaotic 0.4034 0.9905 0.1478 (c1)–(c2) green
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4. Chaos Anti-Control

Consider the IHCOM Equation (11) for ∆ = 1 and γ = 0.48. Here, this choice of γ corresponds to
the periodic behavior of the original HCOM Equation (8) (see Figure 1), and the task is to stimulate
chaos in the original HCOM Equation (8).

As in Section 4, bifurcation diagrams together with the 0-1 test for chaos K and L show rich
dynamics, see Figure 5a-upper,a-lower,d. The values δ2 = 0.0922 and δ3 = 0.3078 were picked to show
the non-trivial 12 and 16 stable-cycles, respectively, in Figure 5b,c (highlighted by red marks).

Property 2. For IHCOM Equation (11) with ∆ = 1 and γ = 0.48:

(i) there is at least one δ ∈ [0, 0.442] such that IHCOM Equation (11) admits a self-excited cycle,
(ii) there is at least one δ ∈ [0, 0.442] such that IHCOM Equation (11) admits chaotic trajectories.

The proof of Property 2 can be done in an analogous way to the proof of Property 1 using Figure 5.

(a)

1000 1010 1020 1030 1040 1050

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)
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0.8

1

1.2

1.4

1.6

1.8

(c) (d)

Figure 5. Investigated IHCOM Equation (11), with ∆ = 1 and γ = 0.48, (a-upper) BDδ, (a-lower) chaos
characteristics K and L for q1 variable, (b) time history for δ2 = 0.0992 (12 stable cycle highlighted by
the red mark), (c) time history for δ3 = 0.3078 (16 stable cycle highlighted by the red mark), and (d) is
magnified part of (a).

5. Chaos Control Versus Anti-Control

To see the change of basin of attraction under the influence of the injected value see Figure 6,
where the upper part corresponds to the anti-control (γ = 0.48, Section 4) and the lower case to the
chaos control (γ = 0.5224, Section 3). The equilibria of both, HCOM and IHCOM Equation (11), are
drawn in green circles and a cyan box, respectively. The non-trivial (non-zero) equilibrium (qIN , qIN)

of IHCOM Equation (11) can be computed by direct calculation, where



Mathematics 2020, 8, 1670 9 of 13

qIN =
a− c + ((γa2 − 2γac + γc2 + 4bδ + 4Nbδ)/γ)1/2)

2b(1 + N)
. (15)
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Figure 6. Density plots of IHCOM Equation (11): ((a1)–(a3)) for γ = 0.48 and ((b1)–(b3)) for γ = 0.5244;
here, the green circle stands for (qN , qN) equilibrium of HCOM, and the cyan box for (qIN , qIN)

equilibrium of IHCOM.

Figure 7 shows the IHCOM Equation (11) system complexity in the parameters plane
δ× γ = [0, 0.44]× [0.45, 0.525].

(a) dynamics characteristics L

(b) dynamic characteristic K of q1

Figure 7. Dynamics detection of IHCOM Equation (11) on δ× γ with ∆ = 1: (a) L and (b) K of q1.
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6. Alternative Impulse Control Approach

Furthermore, it is possible to control dynamical behavior even if the impulses are applied rarely,
e.g., every ∆ = 2 steps, as shown in Figure 8.

(a) (b)

Figure 8. BDδ of IHCOM Equation (11) (upper) and K, L (lower) with ∆ = 2 and (a) γ = 0.5244:
(b) γ = 0.48.

In addition, the IHCOM Equation (11) can be designed as follows:

F(qn
1 , qn

2 ) + (δ, 0), if n = ni, (16)

i.e., only the first variable is impulsed. Note that, for γ = 0.5244 and δ > 0.014, the system diverges
and chaos is not possible to control; see Figure 9a. And, if γ = 0.48, chaos anti-control is possible if
0 < δ < 0.394; for δ ≥ 0.394, the system diverges, see Figure 10a. Modifying the IHCOM Equation (11)
by injection only on the second variable:

F(qn
1 , qn

2 ) + (0, δ), if n = ni, (17)

one can obtain analogous results. In this case, for γ = 0.5244, chaos is possible to control (see
Figure 9b), but, for γ = 0.48, anti-control of chaos is not possible (see Figure 10b). This demonstrates
the importance of the choice of which variable injection is applied.
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(a) impulsed HCOM Equation (8) on q1 (b) impulsed HCOM Equation (8) on q2

Figure 9. Impulsed HCOM Equation (2) system on q1 (a) and q2 (b): BDδ with ∆ = 1 and γ = 0.5244.

(a) impulsed HCOM Equation (8) system on q1 (b) impulsed HCOM Equation (8) system on q2

Figure 10. Impulsed HCOM Equation (2) system on q1 (a) and q2 (b): BDδ with ∆ = 1 and γ = 0.48.

7. Conclusions

In this paper, the main focus was on dynamics investigation of a newly introduced injected
two-dimensional discrete dynamical system.

Firstly, the original model HCOM Equation (8) is recalled (in Section 2) with a set of the driving
parameters (in Table 1), where the system parameter γ is used and is crucial for further investigation.
For the following research, two of the values were picked (γ0 = 0.48 and γ1 = 0.5224) using bifurcation
analysis in Figure 1. The first one, γ0, corresponds to the regular, and the second one, γ1, to the
chaotic case.

Secondly, the original model is researched under the influence of injection of some additions
at every iteration step. Hence, the IHCOM Equation (11) is introduced, and its rich dynamics are
extensively studied for two cases through massive numerical simulations:

(i) in Section 3, for γ = 0.5224 to control chaos, with the main results given in Property 1 and Figure 3,
(ii) in Section 4, for γ = 0.48 to anti-control chaos, see the main results: Property 2 and Figure 5.

Next, in Section 5, the previous controlling mechanisms were compared by showing selected
density plots (Figure 6) and the regularity detection on δ× γ place (Figure 7).

An alternative approach to impulse control is given in Section 6, where non-symmetric impulses
were applied and appropriate analysis was given in Figures 9 and 10.
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As a final comment, let us point out that the injected value γ was picked as positive number,
meaning some addition to the market is given at every time step. It is also possible to anti-control the
chaos or to control the model by some tax, that is, the injection value γ is negative. This case sometimes
causes massive divergences of both values q1 and q2. Hence, this case is left for further research.
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24. Tomčala, J. Acceleration of time series entropy algorithms. J. Supercomput. 2019, 75, 1443–1454. [CrossRef]
25. Halfar, R. Dynamical properties of Beeler–Reuter cardiac cell model with respect to stimulation parameters.

Int. J. Comput. Math. 2020, 97, 498–507. [CrossRef]
26. Von Bremen, H.F.; Udwadia, F.E.; Proskurowski, W. An efficient QR based method for the computation of

Lyapunov exponents. Phys. D Nonlinear Phenom. 1997, 101, 1–16. [CrossRef]
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