Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = annular shear strength test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6076 KB  
Article
Research on the Vertical Bearing Capacity of Concrete-Filled Steel Tube Composite Piles by Mixing Method
by Chaosen Tian, Ping Li, Rongxi Yv, Yixin Li and Bohan Li
Appl. Sci. 2025, 15(9), 5022; https://doi.org/10.3390/app15095022 - 30 Apr 2025
Cited by 2 | Viewed by 592
Abstract
To address the issues of low shear strength, susceptibility to eccentricity, and alignment difficulties in post-inserted core piles, a new type of steel tube concrete integrated mixing composite pile has been independently developed. This pile type replaces the conventional mixing pile shaft with [...] Read more.
To address the issues of low shear strength, susceptibility to eccentricity, and alignment difficulties in post-inserted core piles, a new type of steel tube concrete integrated mixing composite pile has been independently developed. This pile type replaces the conventional mixing pile shaft with a larger diameter steel tube equipped with mixing blades. After forming the external annular cement mixing pile, the steel tube is retained, and the hollow core is filled with concrete. To thoroughly explore the vertical compressive bearing characteristics of the steel tube concrete mixing composite pile and clarify its vertical compressive behavior, static load field tests and PLAXIS 3D finite element numerical simulations were conducted on four test piles of different sizes to analyze the vertical bearing performance of the steel tube concrete mixing composite pile. The research results indicate that for a composite pile with a length of 40 m, an outer diameter of 1000 mm, and a steel tube diameter of 273 mm, the ultimate bearing capacity of a single pile is 7200 kN, with the steel tube concrete core contributing approximately 81% of the vertical bearing capacity, while the cement mixing pile contributes around 19%. Based on the characteristic that the maximum axial force is concentrated in the upper half of the pile length, an innovative variable-diameter design with a reduced wall thickness of the steel pipe in the lower part of the pile was proposed. Practical verification has shown that, despite the reduced material usage, the load-bearing capacity remains largely unchanged. This effectively validates the feasibility of the “strong upper part and weak lower part” design concept and provides an effective way to reduce construction costs. Full article
Show Figures

Figure 1

14 pages, 3648 KB  
Article
Modeling Shearing and Bending Behavior of Kiwifruit Branches Using the Discrete Element Method
by Hongbo Zhao, Zhiqi Zheng, Ruihong Tan, Wenzheng Liu and Zhiqiang Zhang
Appl. Sci. 2024, 14(23), 10920; https://doi.org/10.3390/app142310920 - 25 Nov 2024
Cited by 2 | Viewed by 937
Abstract
Returning pruned branches into the field is a key procedure in kiwifruit cultivation. It utilizes discarded branches and aids in orchard management. Shearing and bending behaviors dominate the mechanized process of branch return; however, current research lacks appropriate modeling methods for these processes. [...] Read more.
Returning pruned branches into the field is a key procedure in kiwifruit cultivation. It utilizes discarded branches and aids in orchard management. Shearing and bending behaviors dominate the mechanized process of branch return; however, current research lacks appropriate modeling methods for these processes. In this study, we developed a discrete element method (DEM) model to simulate the shearing and bending behaviors of kiwifruit branches. Initially, laboratory experiments determined the shear strength and elastic modulus of branch samples to be 31.38 MPa and 1.21 GPa, respectively. An annular kiwifruit branch DEM model was constructed. A Plackett–Burman design test identified significant influencing factors: effective modulus of bond, bond cohesion, effective modulus between ball and wall, and the normal-to-shear stiffness ratio. Utilizing the response surface method, we derived relationships between DEM parameters and mechanical responses. Optimal parameter combinations were found: an effective modulus of bond at 2.2 × 109 Pa, bond cohesion at 2.56 × 108 Pa, effective modulus between ball and wall at 1.27 × 108 Pa, and a normal-to-shear stiffness ratio of 1.16. Finally, simulations of the shearing and bending processes were conducted. The optimal parameter combination was verified with a relative error of 4.5%. Displacement–force curves showed general consistency, indicating reliability in the modeling approach. Full article
Show Figures

Figure 1

16 pages, 7291 KB  
Article
Influence of Moisture Content and Composition of Agricultural Waste with Hard Coal Mixtures on Mechanical and Rheological Properties
by Mateusz Przywara, Regina Lech-Przywara, Marcin Chutkowski, Wojciech Zapała and Ireneusz Opaliński
AgriEngineering 2023, 5(1), 425-440; https://doi.org/10.3390/agriengineering5010028 - 21 Feb 2023
Cited by 2 | Viewed by 3096
Abstract
Utilization of agricultural waste can be done by converting it with conventional fuels to energy. For this purpose, it is necessary to understand the properties of waste and its mixture with the fossil fuels important for its storage and conversion. The objective of [...] Read more.
Utilization of agricultural waste can be done by converting it with conventional fuels to energy. For this purpose, it is necessary to understand the properties of waste and its mixture with the fossil fuels important for its storage and conversion. The objective of the work was to examine the influence of moisture content and the composition of agricultural waste with hard coal mixtures on the mechanical and rheological properties of the waste. The materials tested were powdered biomass: dried distillers grains with solubles (DDGS), meat and bone meal (MBM), and hard coal (HC). Mechanical properties were measured to investigate flowability with the Jenike shear tester. A technique with an annular powder rheometer was applied for rheological measurements. It was shown that an increased moisture content worsened the flowability of the mixtures, while an increased biomass content reduced the influence of moisture and stabilized the mechanical properties of the mixtures in quasi-static conditions. In dynamic conditions, moisture decreased the mechanical strength of the mixtures and increased their flowability. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

16 pages, 6062 KB  
Article
Experimental Investigation on the Evolution of Tensile Mechanical Behavior of Cement Stone Considering the Variation of Burial Depth
by Bohang Liu, Lei Wang, Yintong Guo, Jing Li and Hanzhi Yang
Energies 2022, 15(19), 7340; https://doi.org/10.3390/en15197340 - 6 Oct 2022
Cited by 1 | Viewed by 1705
Abstract
The cement sheath is an annular structure between casing and formation, which is crucial to the integrity of the wellbore system. Considering that the temperature and pressure environment is changing continuously with increasing burial depth, the micro-structure and macro=mechanical properties of the in-situ [...] Read more.
The cement sheath is an annular structure between casing and formation, which is crucial to the integrity of the wellbore system. Considering that the temperature and pressure environment is changing continuously with increasing burial depth, the micro-structure and macro=mechanical properties of the in-situ cement sheath will change accordingly. To investigate the variation of burial depth on the evolution of the tensile mechanical behavior of oil cement stone, five temperature-pressure curing and testing conditions (25 °C—0 MPa, 50 °C—10 MPa, 80 °C—20 MPa, 110 °C—30 MPa, and 140 °C—40 MPa) are set to approximately simulate an in situ temperature-pressure environment at five typical burial depths (0 m, 1000 m, 2000 m, 3000 m, and 4000 m). The in situ tensile behavior, micro-structure and pore size distribution of the cement stones at each condition are tested and comparatively analyzed. Results show that with increasing temperature and pressure, the brittleness of the cement stone reduces and its ductility strengthens accordingly. The tensile strength experiences rapid growth at first, then increases at a slower rate and finally decreases. The failure mode of the cement stone gradually transforms from tensile splitting to tensile-shear composite fracture, accompanied by increasing fracture surface roughness. Microscopically, with increasing curing temperature and pressure, the pore structure of cement stone gradually transforms from closely stacked laminated sheets to interconnected fiber networks. The dense structure of cement stone gradually becomes loose and porous. The porosity also increases from 15.96% to 29.46%. Full article
(This article belongs to the Special Issue Advances in the Utilization of Underground Energy and Space)
Show Figures

Figure 1

13 pages, 2832 KB  
Article
Influence of the Diatomite Specie on the Peak and Residual Shear Strength of the Fine-Grained Soil
by Carlos J. Slebi-Acevedo, Daniel A. Zuluaga-Astudillo, Juan C. Ruge and Daniel Castro-Fresno
Appl. Sci. 2021, 11(4), 1352; https://doi.org/10.3390/app11041352 - 3 Feb 2021
Cited by 12 | Viewed by 3395
Abstract
Diatomite is a powdering mineral mainly composed of diatom microfossils present in marine and lacustrine soils, which influences their physical and mechanical properties. Although many articles have been found in the literature concerning the influence of diatomite in the overall behavior of natural [...] Read more.
Diatomite is a powdering mineral mainly composed of diatom microfossils present in marine and lacustrine soils, which influences their physical and mechanical properties. Although many articles have been found in the literature concerning the influence of diatomite in the overall behavior of natural soils, few research efforts have been carried out to evaluate the influence of the diatom microfossil species on their shear resistance. Therefore, in this research, the influence of the diatomite species and the content in the peak and the residual shear strength of diatomite-fine grained soil mixtures was analyzed using the annular shear strength test. Scanning electron microscopy (SEM) and Atterberg limits were also carried out as additional tests to explain the interlocking effect between the microfossils and the soil. Overall, both diatomite species increased both peak and residual shear strength of the soil similar to dense sands. Nevertheless, the Mexican species reveal higher friction angle values compared with Colombian species. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

16 pages, 17216 KB  
Article
An Investigation on Microstructure, Texture and Mechanical Properties of AZ80 Mg Alloy Processed by Annular Channel Angular Extrusion
by Xi Zhao, Shuchang Li, Yong Xue and Zhimin Zhang
Materials 2019, 12(6), 1001; https://doi.org/10.3390/ma12061001 - 26 Mar 2019
Cited by 16 | Viewed by 4127
Abstract
Annular channel angular extrusion has been recently developed as a new single-pass severe plastic deformation method suitable for producing large size cup-shaped parts from cylindrical billets. In this study, the novel technology was successfully applied to commercial AZ80 Mg alloy at 300 °C, [...] Read more.
Annular channel angular extrusion has been recently developed as a new single-pass severe plastic deformation method suitable for producing large size cup-shaped parts from cylindrical billets. In this study, the novel technology was successfully applied to commercial AZ80 Mg alloy at 300 °C, and microstructure, texture evolution, and mechanical properties were investigated. Due to severe shear deformation, the initial microstructure, including the coarse grains and large eutectic β-phases, was greatly refined. The strong basal texture formed during the initial deformation stage was modified into a weak tilted dynamic texture. During the deformation process, fine β-particles separated from eutectic phases effectively hindered the grain boundary migration and rotation, enhancing the grain refinement and texture weakening. More than 63% of the microhardness increase was achieved in this extruded part. Also, tensile tests showed the yield strength and elongation in both directions (transverse and longitudinal) of extruded part were improved more than 2.5 times, and the ultimate tensile strength was improved more than 2 times, compared to the initial material state. The improved material properties were mainly attributed to microstructure (grain and phase) refinement and texture weakening. It was demonstrated that the annular channel angular extrusion process can be considered as a novel and effective single-pass severe plastic deformation method. Full article
(This article belongs to the Collection Alloy and Process Development of Light Metals)
Show Figures

Figure 1

Back to TopTop